纳米颗粒
材料科学
PLGA公司
乙醇酸
壳聚糖
分散性
Zeta电位
核化学
纳米技术
乳酸
化学
高分子化学
有机化学
遗传学
生物
细菌
作者
Chien Ngoc Nguyen,Bao Ngoc N. Tran,Hoa Nguyen Thi,Phong Pham Huu,Huong Nguyen Thi
摘要
In this study, dihydroartemisinin (DAR), an anticancer agent with low toxicity, was loaded into poly-lactic-co-glycolic acid (PLGA) nanoparticles. The obtained PLGA cores were then coated with chitosan (CS) and/or folic acid (FA) by electrostatic interactions to enhance their anticancer and cellular uptake properties. DAR-loaded PLGA nanoparticles were prepared by the solvent evaporation method. CS and FA solutions at different ratios were dispersed concurrently into the PLGA suspension to facilitate electrostatic interactions and form nanosuspensions. The physiochemical properties of nanoparticles such as average particle size (Z), polydispersity index (PDI), zeta potential (ZP), TEM image, X-ray diffraction, and encapsulation efficiency were determined. We then determined the role of FA and CS coating on the nanoparticle surface in cytotoxicity, cellular uptake, and apoptosis. We show that the resultant nanoparticles were spherical and uniform, with a coating layer containing FA and CS covering PLGA cores with a Z of 223.5±4.28 nm, PDI of 0.209±0.03, and ZP of 15.75±1.3 mV. Both FA and CS improved the cytotoxicity of nanoparticles compared to free DAR and PLGA nanoparticles in HL-60 and KB cancer cell lines. Further, FA enhanced the cellular uptake of nanoparticles to a greater extent than CS. However, CS contributed more to apoptosis induction than FA.
科研通智能强力驱动
Strongly Powered by AbleSci AI