Anisotropic Compressive Behavior of Functionally Density Graded Aluminum Foam Prepared by Controlled Melt Foaming Process

材料科学 变形(气象学) 复合材料 压缩(物理) 金属泡沫 数字图像相关 应变能密度函数 撕裂 横截面 压力(语言学) 应变率 各向异性 抗压强度 有限元法 结构工程 光学 工程类 哲学 物理 语言学
作者
Bingbing Zhang,Shuangqi Hu,Zhiqiang Fan
出处
期刊:Materials [MDPI AG]
卷期号:11 (12): 2470-2470 被引量:8
标识
DOI:10.3390/ma11122470
摘要

Aluminum foams with a functionally graded density have exhibited better impact resistance and a better energy absorbing performance than aluminum foams with a uniform density. Nevertheless, the anisotropic compression behavior caused by the graded density has scarcely been studied. In this paper, a density graded aluminum foam (FG) was prepared by a controlled foaming process. The effect of density anisotropy on the mechanical behavior of FGs was investigated under quasi-static compression and a low-velocity impact. Digital image correlation (DIC) and numerical simulation techniques were used to identify deformation mechanisms at both macro and cell levels. Results show that transverse compression on FGs lead to a higher collapse strength but also to a lower energy absorption, due to the significant decrease in densification strain and plateau stress. The deformation behavior of FGs under longitudinal compression was dominated by the progressive extension of the deformation bands. For FGs under transverse compression, the failure mode of specimens was characterized by multiple randomly distributed deformation bands. Moreover, the transverse compression caused more deformation on cells, through tearing and lateral stretching, because of the high lateral strain level in the specimens. It was concluded that the transverse compression of FGs lead to a lower plateau stress and a lower cell usage, thus resulting in a poorer energy absorption efficient; this constitutes a key factor which should be taken into consideration in structural design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ladette完成签到,获得积分20
刚刚
JamesPei应助端庄书雁采纳,获得10
1秒前
2秒前
热情的啤酒完成签到,获得积分10
4秒前
科研通AI2S应助栗惠采纳,获得10
4秒前
4秒前
充电宝应助可靠雅青采纳,获得10
7秒前
8秒前
9秒前
852应助www采纳,获得10
9秒前
lz发布了新的文献求助10
10秒前
10秒前
10秒前
小晴天完成签到,获得积分10
11秒前
11秒前
Akim应助fgh采纳,获得10
11秒前
不配.应助可一采纳,获得10
12秒前
hgc完成签到,获得积分10
14秒前
14秒前
南瓜难完成签到,获得积分20
15秒前
李健应助令莞采纳,获得10
16秒前
Xenia发布了新的文献求助10
16秒前
姜晓峰发布了新的文献求助10
16秒前
16秒前
方超发布了新的文献求助10
19秒前
20秒前
俭朴静竹发布了新的文献求助100
20秒前
20秒前
功必扬完成签到 ,获得积分10
21秒前
ccc完成签到,获得积分10
21秒前
22秒前
23秒前
芝芝发布了新的文献求助10
23秒前
可靠雅青发布了新的文献求助10
23秒前
xmy发布了新的文献求助10
24秒前
24秒前
张烤明发布了新的文献求助10
24秒前
二三三发布了新的文献求助20
25秒前
调皮的幻香完成签到,获得积分20
25秒前
科研通AI2S应助卡戎529采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145789
求助须知:如何正确求助?哪些是违规求助? 2797251
关于积分的说明 7823240
捐赠科研通 2453560
什么是DOI,文献DOI怎么找? 1305699
科研通“疑难数据库(出版商)”最低求助积分说明 627543
版权声明 601484