Can AI Solve the Diversity Problem in the Tech Industry? Mitigating Noise and Bias in Employment Decision-Making

垃圾 多样性(政治) 感觉 晋升(国际象棋) 潜意识 人力资本 心理学 业务 社会心理学 计算机科学 政治学 法学 经济 政治 精神分析 程序设计语言 经济增长
作者
Kimberly Houser
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:62
链接
摘要

After the first diversity report was issued in 2014 revealing the dearth of women in the tech industry, companies rushed to hire consultants to provide unconscious bias training to their employees. Unfortunately, recent diversity reports show no significant improvement, and, in fact, women lost ground during some of the years. According to a Human Capital Institute survey, nearly 80% of leaders were still using gut feeling and personal opinion to make decisions that affected talent-management practices. By incorporating AI into employment decisions, we can mitigate unconscious bias and variability (noise) in human decision-making. While some scholars have warned that using artificial intelligence (AI) in decision-making creates discriminatory results, they downplay the reason for such occurrences - humans. The main concerns noted relate to the risk of reproducing bias in an algorithmic outcome (“garbage in, garbage out”) and the inability to detect bias due to the lack of understanding of the reason for the algorithmic outcome (“black box” problem). In this paper, I argue that responsible AI will abate the problems caused by unconscious biases and noise in human decision-making, and in doing so increase the hiring, promotion, and retention of women in the tech industry. The new solutions to the garbage in, garbage out and black box concerns will be explored. The question is not whether AI should be incorporated into decisions impacting employment, but rather why in 2019 are we still relying on faulty human decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳发布了新的文献求助10
1秒前
1秒前
zhanjl13完成签到,获得积分10
2秒前
JYX完成签到 ,获得积分10
2秒前
懒洋洋tzy完成签到 ,获得积分10
3秒前
4秒前
4秒前
wanci应助mjn404采纳,获得10
6秒前
6秒前
柠檬小白完成签到,获得积分10
6秒前
英俊的铭应助太阳采纳,获得10
7秒前
8秒前
9秒前
10秒前
10秒前
Dr大壮完成签到,获得积分10
11秒前
2222完成签到,获得积分10
13秒前
yihaiqin发布了新的文献求助10
13秒前
枫叶-ZqqC发布了新的文献求助10
14秒前
yzf完成签到,获得积分10
15秒前
慕青应助怕黑的擎采纳,获得10
15秒前
马晓天完成签到,获得积分10
16秒前
Jasper应助立里采纳,获得10
16秒前
wure10发布了新的文献求助10
17秒前
苗修杰完成签到,获得积分10
18秒前
zhang完成签到,获得积分10
19秒前
20秒前
21秒前
乐乐应助温暖幻桃采纳,获得10
22秒前
隐形曼青应助冷艳中蓝采纳,获得10
23秒前
23秒前
24秒前
怕黑的擎发布了新的文献求助10
27秒前
wzq发布了新的文献求助10
27秒前
管靖易发布了新的文献求助10
27秒前
难过代双完成签到,获得积分10
28秒前
谷秋完成签到 ,获得积分10
29秒前
30秒前
追寻稀发布了新的文献求助10
30秒前
亮lll发布了新的文献求助150
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437