Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis

电催化剂 纳米材料 纳米技术 材料科学 表面工程 催化作用 电极 表面改性 吸附 化学工程 化学 电化学 生物化学 工程类 物理化学 有机化学
作者
Pengzuo Chen,Yun Tong,Changzheng Wu,Yi Xie
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:51 (11): 2857-2866 被引量:213
标识
DOI:10.1021/acs.accounts.8b00266
摘要

Exploitation of highly active and cost-effective electrode materials for the design of new types of renewable energy storage and conversion systems has been tremendously stimulated by the higher attention being paid to global energy security and invention of alternative clean sustainable energy technologies. Low-dimensional solid materials with special atomic and electronic structures are deemed desirable platforms for establishing clear relationships between surface/interface structure characteristics and electrocatalytic activity, representing enormous potential in the pursuit of high-performance electrocatalysts. Recent achievements revealed that surface and interfacial atomic engineering is capable of achieving novel physical and chemical properties as well as superior synergistic effects in inorganic low-dimensional nanomaterials for electrocatalysis. Compared to bulk counterparts, the electronic structure in the surface of inorganic low-dimensional nanomaterials is more sensitive to and can thus be regulated more easily by surface and interfacial modification strategies, resulting in greatly optimized electrocatalytic performance. In this Account, we focus on recent progress in surface and interfacial modification strategies to efficaciously engineer the electrocatalytic performance of inorganic low-dimensional electrode materials. We summarize several important regulation strategies of dimensional confinement, incorporation, surface reconstruction, interface modulation, and defect engineering, which immensely optimize the spin configuration, electrical conductivity, catalytic active site exposure, and reaction energy barrier of inorganic electrode material. At dimensionally confined atomic-scale thickness, more surface-facet atoms are exposed as active sites, which provide an ideal platform for applying surface incorporation and defect engineering, subsequently producing more catalytic active sites and better adsorption free energy for the improvement of catalytic activity. Moreover, regulation of the interfacial character of electrode materials, such as the surface strain, contact area, and bridged bonds, can optimize the electron transfer capacity and reaction kinetics process. On the other hand, once exposed to a strong alkaline solution under oxidizing potentials, the real active layer of electrode materials (such as transition-metal sulfides, nitrides, and phosphides) could be activated by a surface reconstruction strategy, realizing a unique core-shell structure with a highly conductive electron transfer channel inside and highly active catalytic sites outside for electrocatalysis. Based on these points of view, focusing on inorganic low-dimensional electrode materials, the proper choice of surface and interfacial modification strategies would effectively modulate their electrocatalytic activity, realizing unlimited potential applications in promising areas of electrocatalytic water splitting, rechargeable metal batteries, and fuel cells. Overall, we anticipate that surface and interfacial regulation approaches can provide a new understanding of the design of inorganic electrode materials, facilitating the rapid promotion of electrocatalytic performance in electrode materials for electrocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿三的风光完成签到 ,获得积分10
刚刚
nature完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
科研狗完成签到 ,获得积分10
2秒前
追光者完成签到,获得积分10
2秒前
HJJHJH发布了新的文献求助10
3秒前
Advance.Cheng发布了新的文献求助10
3秒前
传统的大白完成签到,获得积分10
3秒前
复杂的白秋完成签到,获得积分10
4秒前
4秒前
舒适的平蓝完成签到,获得积分10
5秒前
DAI123完成签到,获得积分10
5秒前
5秒前
阳yang发布了新的文献求助10
5秒前
HIH完成签到 ,获得积分10
6秒前
可靠的寒风完成签到,获得积分10
7秒前
Pan完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
丢丢丢完成签到,获得积分10
8秒前
安静的ky完成签到,获得积分10
8秒前
JamesPei应助mary采纳,获得10
8秒前
木子林夕完成签到,获得积分10
8秒前
勤奋尔丝完成签到 ,获得积分10
9秒前
9秒前
10秒前
haozi完成签到,获得积分10
10秒前
啾啾啾发布了新的文献求助30
11秒前
KK发布了新的文献求助10
11秒前
魏魏魏完成签到,获得积分10
11秒前
明明发布了新的文献求助10
12秒前
pluto应助淘气科研采纳,获得10
12秒前
晴栀发布了新的文献求助10
12秒前
单纯血茗发布了新的文献求助50
12秒前
冷艳的冬萱完成签到 ,获得积分10
13秒前
lemon完成签到,获得积分10
13秒前
平常的路人完成签到,获得积分10
13秒前
丢丢丢发布了新的文献求助10
14秒前
orixero应助靖123456采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029