Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis

电催化剂 纳米材料 纳米技术 材料科学 表面工程 催化作用 电极 表面改性 吸附 化学工程 化学 电化学 生物化学 工程类 物理化学 有机化学
作者
Pengzuo Chen,Yun Tong,Changzheng Wu,Yi Xie
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:51 (11): 2857-2866 被引量:213
标识
DOI:10.1021/acs.accounts.8b00266
摘要

Exploitation of highly active and cost-effective electrode materials for the design of new types of renewable energy storage and conversion systems has been tremendously stimulated by the higher attention being paid to global energy security and invention of alternative clean sustainable energy technologies. Low-dimensional solid materials with special atomic and electronic structures are deemed desirable platforms for establishing clear relationships between surface/interface structure characteristics and electrocatalytic activity, representing enormous potential in the pursuit of high-performance electrocatalysts. Recent achievements revealed that surface and interfacial atomic engineering is capable of achieving novel physical and chemical properties as well as superior synergistic effects in inorganic low-dimensional nanomaterials for electrocatalysis. Compared to bulk counterparts, the electronic structure in the surface of inorganic low-dimensional nanomaterials is more sensitive to and can thus be regulated more easily by surface and interfacial modification strategies, resulting in greatly optimized electrocatalytic performance. In this Account, we focus on recent progress in surface and interfacial modification strategies to efficaciously engineer the electrocatalytic performance of inorganic low-dimensional electrode materials. We summarize several important regulation strategies of dimensional confinement, incorporation, surface reconstruction, interface modulation, and defect engineering, which immensely optimize the spin configuration, electrical conductivity, catalytic active site exposure, and reaction energy barrier of inorganic electrode material. At dimensionally confined atomic-scale thickness, more surface-facet atoms are exposed as active sites, which provide an ideal platform for applying surface incorporation and defect engineering, subsequently producing more catalytic active sites and better adsorption free energy for the improvement of catalytic activity. Moreover, regulation of the interfacial character of electrode materials, such as the surface strain, contact area, and bridged bonds, can optimize the electron transfer capacity and reaction kinetics process. On the other hand, once exposed to a strong alkaline solution under oxidizing potentials, the real active layer of electrode materials (such as transition-metal sulfides, nitrides, and phosphides) could be activated by a surface reconstruction strategy, realizing a unique core-shell structure with a highly conductive electron transfer channel inside and highly active catalytic sites outside for electrocatalysis. Based on these points of view, focusing on inorganic low-dimensional electrode materials, the proper choice of surface and interfacial modification strategies would effectively modulate their electrocatalytic activity, realizing unlimited potential applications in promising areas of electrocatalytic water splitting, rechargeable metal batteries, and fuel cells. Overall, we anticipate that surface and interfacial regulation approaches can provide a new understanding of the design of inorganic electrode materials, facilitating the rapid promotion of electrocatalytic performance in electrode materials for electrocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
han应助归华采纳,获得10
刚刚
刚刚
SYLH应助zly采纳,获得30
3秒前
完美世界应助娇气的天亦采纳,获得10
5秒前
7秒前
10秒前
科目三应助彭栋采纳,获得10
12秒前
方文浩发布了新的文献求助10
12秒前
ding应助YWang采纳,获得10
15秒前
15秒前
林宝雯关注了科研通微信公众号
20秒前
23秒前
斯文败类应助GGBOND采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
李健的小迷弟应助GGBOND采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
24秒前
大模型应助科研通管家采纳,获得10
24秒前
圆锥香蕉应助科研通管家采纳,获得20
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
Bio应助科研通管家采纳,获得30
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
25秒前
28秒前
30秒前
30秒前
Dotson发布了新的文献求助10
31秒前
sinsinsin发布了新的文献求助10
32秒前
CodeCraft应助娇气的天亦采纳,获得10
33秒前
34秒前
权思远发布了新的文献求助10
34秒前
彭栋发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
35秒前
李爱国应助收集快乐采纳,获得10
36秒前
守墓人完成签到 ,获得积分10
37秒前
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105