亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepCenterline: a Multi-task Fully Convolutional Network for Centerline Extraction

计算机科学 分割 人工智能 路径(计算) 树(集合论) 模式识别(心理学) 对象(语法) 提取器 虚假关系 计算机视觉 像素 数学 数学分析 机器学习 工艺工程 工程类 程序设计语言
作者
Zhihui Guo,Junjie Bai,Yi Lü,Xin Wang,Kunlin Cao,Qi Song,Milan Sonka,Youbing Yin
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.1903.10481
摘要

A novel centerline extraction framework is reported which combines an end-to-end trainable multi-task fully convolutional network (FCN) with a minimal path extractor. The FCN simultaneously computes centerline distance maps and detects branch endpoints. The method generates single-pixel-wide centerlines with no spurious branches. It handles arbitrary tree-structured object with no prior assumption regarding depth of the tree or its bifurcation pattern. It is also robust to substantial scale changes across different parts of the target object and minor imperfections of the object's segmentation mask. To the best of our knowledge, this is the first deep-learning based centerline extraction method that guarantees single-pixel-wide centerline for a complex tree-structured object. The proposed method is validated in coronary artery centerline extraction on a dataset of 620 patients (400 of which used as test set). This application is challenging due to the large number of coronary branches, branch tortuosity, and large variations in length, thickness, shape, etc. The proposed method generates well-positioned centerlines, exhibiting lower number of missing branches and is more robust in the presence of minor imperfections of the object segmentation mask. Compared to a state-of-the-art traditional minimal path approach, our method improves patient-level success rate of centerline extraction from 54.3% to 88.8% according to independent human expert review.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助邓润杰采纳,获得10
刚刚
稳重白猫完成签到 ,获得积分10
1秒前
sweet完成签到 ,获得积分10
3秒前
李爱国应助邓润杰采纳,获得10
11秒前
数理化完成签到 ,获得积分10
11秒前
DBP87弹完成签到 ,获得积分10
17秒前
22秒前
科目三应助傻傻的修洁采纳,获得30
24秒前
情怀应助邓润杰采纳,获得10
32秒前
40秒前
科研通AI6应助邓润杰采纳,获得10
43秒前
FashionBoy应助傻傻的修洁采纳,获得10
45秒前
情怀应助Radiance采纳,获得10
49秒前
wangxw完成签到,获得积分10
50秒前
52秒前
科研通AI2S应助傻傻的修洁采纳,获得10
52秒前
1033524682发布了新的文献求助30
56秒前
56秒前
neao完成签到 ,获得积分10
59秒前
Lucas应助邓润杰采纳,获得10
1分钟前
Radiance发布了新的文献求助10
1分钟前
Ava应助傻傻的修洁采纳,获得10
1分钟前
Radiance完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
丘比特应助邓润杰采纳,获得10
1分钟前
1033524682完成签到,获得积分10
1分钟前
成就觅海完成签到 ,获得积分10
1分钟前
窝不想写论文完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6应助Li采纳,获得50
1分钟前
小马甲应助君寻采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
传奇3应助邓润杰采纳,获得10
1分钟前
sandy发布了新的文献求助10
1分钟前
科研通AI6应助MIMI采纳,获得10
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
在水一方应助傻傻的修洁采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573375
求助须知:如何正确求助?哪些是违规求助? 4659430
关于积分的说明 14724583
捐赠科研通 4599297
什么是DOI,文献DOI怎么找? 2524247
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737