DeepCenterline: a Multi-task Fully Convolutional Network for Centerline Extraction

计算机科学 分割 人工智能 路径(计算) 树(集合论) 模式识别(心理学) 对象(语法) 提取器 虚假关系 计算机视觉 像素 数学 数学分析 工程类 机器学习 程序设计语言 工艺工程
作者
Zhihui Guo,Junjie Bai,Yi Lü,Xin Wang,Kunlin Cao,Qi Song,Milan Sonka,Youbing Yin
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.1903.10481
摘要

A novel centerline extraction framework is reported which combines an end-to-end trainable multi-task fully convolutional network (FCN) with a minimal path extractor. The FCN simultaneously computes centerline distance maps and detects branch endpoints. The method generates single-pixel-wide centerlines with no spurious branches. It handles arbitrary tree-structured object with no prior assumption regarding depth of the tree or its bifurcation pattern. It is also robust to substantial scale changes across different parts of the target object and minor imperfections of the object's segmentation mask. To the best of our knowledge, this is the first deep-learning based centerline extraction method that guarantees single-pixel-wide centerline for a complex tree-structured object. The proposed method is validated in coronary artery centerline extraction on a dataset of 620 patients (400 of which used as test set). This application is challenging due to the large number of coronary branches, branch tortuosity, and large variations in length, thickness, shape, etc. The proposed method generates well-positioned centerlines, exhibiting lower number of missing branches and is more robust in the presence of minor imperfections of the object segmentation mask. Compared to a state-of-the-art traditional minimal path approach, our method improves patient-level success rate of centerline extraction from 54.3% to 88.8% according to independent human expert review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
汉堡包应助愤怒的小鸽子采纳,获得10
2秒前
lll发布了新的文献求助10
2秒前
张浩毅发布了新的文献求助10
3秒前
Connie完成签到,获得积分10
4秒前
在水一方应助我会好好的采纳,获得10
4秒前
111完成签到,获得积分10
5秒前
5秒前
Lucas应助邢寻冬采纳,获得10
6秒前
sadascaqwqw发布了新的文献求助10
7秒前
7秒前
8秒前
乐观的涵菱完成签到,获得积分10
8秒前
9秒前
9秒前
SWL发布了新的文献求助10
10秒前
大个应助CC采纳,获得10
10秒前
无花果应助JianmaoChen采纳,获得10
11秒前
小鱼仔仔发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
香蕉觅云应助EddieDream采纳,获得10
13秒前
孟冬完成签到 ,获得积分20
13秒前
14秒前
14秒前
廖L_发布了新的文献求助10
16秒前
lyg完成签到,获得积分10
16秒前
Tara完成签到,获得积分20
16秒前
hh77发布了新的文献求助20
16秒前
18秒前
糊涂的含卉完成签到,获得积分10
19秒前
19秒前
研友_8RyzBZ发布了新的文献求助10
21秒前
没有昵称发布了新的文献求助10
22秒前
夏艳青发布了新的文献求助10
22秒前
22秒前
深情安青应助Melody采纳,获得10
24秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959091
求助须知:如何正确求助?哪些是违规求助? 3505434
关于积分的说明 11123675
捐赠科研通 3237077
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821