Dynamic Liquid Surface Enhanced Raman Scattering Platform Based on Soft Tubular Microfluidics for Label-Free Cell Detection

重复性 微流控 拉曼散射 化学 拉曼光谱 检出限 生物系统 动态光散射 混合(物理) 纳米技术 分析化学(期刊) 色谱法 光学 材料科学 纳米颗粒 物理 生物 量子力学
作者
Xiaoding Xu,Lei Zhao,Qilu Xue,Jinkun Fan,Qingqing Hu,Chu Tang,Hongyan Shi,Bo Hu,Jie Tian
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (13): 7973-7979 被引量:36
标识
DOI:10.1021/acs.analchem.9b01111
摘要

Cell detection is of great significance for biomedical research. Surface enhanced Raman scattering (SERS) has been widely applied to the detection of cells. However, there is still a lack of a general, low-cost, rapid, and sensitive SERS method for cell detection. Herein, a dynamic liquid SERS platform, which combines label-free SERS technique with soft tubular microfluidics for cell detection, is proposed. Compared with common static solid and static liquid measurement, the dynamic liquid SERS platform can present dynamical mixing, precise control of the mixing time, and continuous spectra collection. By characterizing the model molecules, the proposed dynamic liquid SERS platform has successfully demonstrated good stability and repeatability with 1.90% and 4.98% relative standard deviation (RSD), respectively. Three cell lines including one normal breast cell line (MCF-10A) and two breast cancer cell lines (MCF-7 and MDA-MB-231) were investigated in this platform. 270 cell spectra were selected as the training set for the classification of the models based on the K-Nearest Neighbor (K-NN) algorithm. In three independent experiments, three types of cells were identified by a test set containing 180 cell spectra with sensitivities above 83.3% and specificities above 91.6%. The accuracy was 94.1 ± 1.14% among three independent cell identifications. The dynamic liquid SERS platform has shown higher signal intensity, better repeatability, less pretreatment, and obtainment of more spectra with less time consumption. It will be a powerful detection tool in the area of cell research, clinical diagnosis, and food safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助李麟采纳,获得10
1秒前
哈哈哈哈完成签到 ,获得积分10
2秒前
yuehan完成签到 ,获得积分10
8秒前
ESC惠子子子子子完成签到 ,获得积分10
12秒前
科研通AI2S应助源圈圈采纳,获得30
14秒前
tramp应助科研通管家采纳,获得10
26秒前
26秒前
好困应助科研通管家采纳,获得10
26秒前
米共完成签到 ,获得积分10
28秒前
zyc完成签到,获得积分10
33秒前
箱子完成签到,获得积分10
33秒前
yyy完成签到 ,获得积分10
34秒前
吹泡泡的红豆完成签到 ,获得积分10
34秒前
guolina完成签到 ,获得积分10
37秒前
yy家的小哥哥完成签到,获得积分10
38秒前
韶邑发布了新的文献求助10
38秒前
xiaosui完成签到 ,获得积分10
44秒前
眯眯眼的黎昕完成签到 ,获得积分10
45秒前
木又完成签到 ,获得积分10
47秒前
和谐的映梦完成签到,获得积分10
49秒前
xjy1521完成签到,获得积分10
50秒前
连难胜完成签到 ,获得积分10
56秒前
笨蛋琪露诺完成签到,获得积分10
57秒前
1分钟前
1分钟前
杨杨完成签到 ,获得积分10
1分钟前
tong童完成签到 ,获得积分10
1分钟前
1分钟前
虾滑丸子完成签到,获得积分10
1分钟前
02完成签到,获得积分10
1分钟前
搜集达人应助zxx5313491采纳,获得10
1分钟前
XC完成签到 ,获得积分10
1分钟前
1分钟前
imica完成签到 ,获得积分10
1分钟前
zxx5313491发布了新的文献求助10
1分钟前
源圈圈完成签到 ,获得积分20
1分钟前
杏梨完成签到,获得积分10
1分钟前
传奇3应助zxx5313491采纳,获得20
1分钟前
麦满分完成签到,获得积分10
1分钟前
NWP完成签到,获得积分10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239049
求助须知:如何正确求助?哪些是违规求助? 2884330
关于积分的说明 8232994
捐赠科研通 2552400
什么是DOI,文献DOI怎么找? 1380706
科研通“疑难数据库(出版商)”最低求助积分说明 649071
邀请新用户注册赠送积分活动 624787