甲醇
催化作用
无定形固体
煅烧
单斜晶系
四方晶系
材料科学
无机化学
氧化物
化学工程
化学
晶体结构
结晶学
有机化学
冶金
工程类
作者
Shohei Tada,Shingo Kayamori,Tetsuo Honma,Hiromu Kamei,Akane Nariyuki,Kenichi Kon,Takashi Toyao,Ken‐ichi Shimizu,Shigeo Satokawa
标识
DOI:10.1021/acscatal.8b01396
摘要
We examined the formation mechanism of active sites on Cu/ZrO2 specific toward CO2-to-methanol hydrogenation. The active sites on Cu/a-ZrO2 (a-: amorphous) were more suitable for CO2-to-methanol hydrogenation than those on Cu/t-ZrO2 (t-: tetragonal) and Cu/m-ZrO2 (m-: monoclinic). When a-ZrO2 was impregnated with a Cu(NO3)2·3H2O solution and then calcined under air, most of the Cu species entered a-ZrO2, leading to the formation of a Cu–Zr mixed oxide (CuaZr1-aOb). The H2 reduction of the thus-formed CuaZr1-aOb led to the formation of Cu nanoparticles on a-ZrO2, which can be dedicated to CO2-to-methanol hydrogenation. We concluded that the selective synthesis of CuaZr1-aOb, especially amorphous CuaZr1-aOb, is a key feature of the catalyst preparation. The preparation conditions of the amorphous CuaZr1-aOb specific toward CO2-to-methanol hydrogenation is as follows: (i) Cu(NO3)2·3H2O/a-ZrO2 is calcined at low temperature (350 °C in this study) and (ii) the Cu loading is low (6 and 8 wt % in this study). Via these preparation conditions, the characteristics of a-ZrO2 for the catalysts remained unchanged during the reaction at 230 °C. The latter preparation condition is related to the solubility limit of Cu species in a-ZrO2. Accordingly, we obtained the amorphous CuaZr1-aOb without forming crystalline CuO particles.
科研通智能强力驱动
Strongly Powered by AbleSci AI