Reactive centre loop dynamics and serpin specificity

舍宾 蛋白酵素 蛋白酶 蛋白质折叠 丝氨酸蛋白酶 丝氨酸蛋白酶抑制剂 蛋白质结构 化学 肽序列 生物化学 生物 生物物理学 计算生物学 基因
作者
Emilia M. Marijanovic,James Fodor,Blake T. Riley,Benjamin T. Porebski,Maurício G. S. Costa,Itamar Kass,David E. Hoke,Sheena McGowan,Ashley M. Buckle
出处
期刊:Scientific Reports [Springer Nature]
卷期号:9 (1) 被引量:38
标识
DOI:10.1038/s41598-019-40432-w
摘要

Serine proteinase inhibitors (serpins), typically fold to a metastable native state and undergo a major conformational change in order to inhibit target proteases. However, conformational lability of the native serpin fold renders them susceptible to misfolding and aggregation, and underlies misfolding diseases such as α1-antitrypsin deficiency. Serpin specificity towards its protease target is dictated by its flexible and solvent exposed reactive centre loop (RCL), which forms the initial interaction with the target protease during inhibition. Previous studies have attempted to alter the specificity by mutating the RCL to that of a target serpin, but the rules governing specificity are not understood well enough yet to enable specificity to be engineered at will. In this paper, we use conserpin, a synthetic, thermostable serpin, as a model protein with which to investigate the determinants of serpin specificity by engineering its RCL. Replacing the RCL sequence with that from α1-antitrypsin fails to restore specificity against trypsin or human neutrophil elastase. Structural determination of the RCL-engineered conserpin and molecular dynamics simulations indicate that, although the RCL sequence may partially dictate specificity, local electrostatics and RCL dynamics may dictate the rate of insertion during protease inhibition, and thus whether it behaves as an inhibitor or a substrate. Engineering serpin specificity is therefore substantially more complex than solely manipulating the RCL sequence, and will require a more thorough understanding of how conformational dynamics achieves the delicate balance between stability, folding and function required by the exquisite serpin mechanism of action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pearl完成签到,获得积分10
1秒前
hahah发布了新的文献求助10
1秒前
请叫我风吹麦浪应助胖豆采纳,获得10
1秒前
无花果应助幸福胡萝卜采纳,获得10
1秒前
2秒前
卡卡发布了新的文献求助10
2秒前
wanci应助风趣的天真采纳,获得10
2秒前
Silence发布了新的文献求助10
2秒前
清爽老九发布了新的文献求助100
2秒前
3秒前
衔尾蛇发布了新的文献求助10
3秒前
小蔡会有猫的完成签到,获得积分10
3秒前
zhai发布了新的文献求助10
3秒前
3秒前
3秒前
村上春树的摩的完成签到 ,获得积分10
3秒前
3秒前
脑洞疼应助JACK采纳,获得10
4秒前
zhouyunan完成签到,获得积分10
4秒前
昵称发布了新的文献求助10
4秒前
4秒前
4秒前
馥日祎完成签到,获得积分10
4秒前
Ava应助Rui采纳,获得10
5秒前
coolkid完成签到 ,获得积分10
5秒前
贼拉瘦的美神完成签到,获得积分10
6秒前
tsy完成签到 ,获得积分10
7秒前
April发布了新的文献求助20
7秒前
8秒前
今后应助不安豁采纳,获得10
9秒前
huifang发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
67发布了新的文献求助10
10秒前
代萌萌完成签到,获得积分10
10秒前
啊哈哈哈发布了新的文献求助10
11秒前
11秒前
四喜格格完成签到,获得积分10
12秒前
科研通AI5应助Laus采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762