高光谱成像
卷积神经网络
人工智能
计算机科学
模式识别(心理学)
特征(语言学)
上下文图像分类
特征提取
光谱带
深度学习
代表(政治)
图像(数学)
遥感
政治
地质学
哲学
语言学
法学
政治学
作者
Swalpa Kumar Roy,Gopal Krishna,Shiv Ram Dubey,B.B. Chaudhuri
出处
期刊:IEEE Geoscience and Remote Sensing Letters
[Institute of Electrical and Electronics Engineers]
日期:2020-02-01
卷期号:17 (2): 277-281
被引量:996
标识
DOI:10.1109/lgrs.2019.2918719
摘要
Hyperspectral image (HSI) classification is widely used for the analysis of remotely sensed images.Hyperspectral imagery includes varying bands of images.Convolutional Neural Network (CNN) is one of the most frequently used deep learning based methods for visual data processing.The use of CNN for HSI classification is also visible in recent works.These approaches are mostly based on 2D CNN.Whereas, the HSI classification performance is highly dependent on both spatial and spectral information.Very few methods have utilized the 3D CNN because of increased computational complexity.This letter proposes a Hybrid Spectral Convolutional Neural Network (HybridSN) for HSI classification.Basically, the HybridSN is a spectral-spatial 3D-CNN followed by spatial 2D-CNN.The 3D-CNN facilitates the joint spatial-spectral feature representation from a stack of spectral bands.The 2D-CNN on top of the 3D-CNN further learns more abstract level spatial representation.Moreover, the use of hybrid CNNs reduces the complexity of the model compared to 3D-CNN alone.To test the performance of this hybrid approach, very rigorous HSI classification experiments are performed over Indian Pines, Pavia University and Salinas Scene remote sensing datasets.The results are compared with the state-of-the-art handcrafted as well as end-to-end deep learning based methods.A very satisfactory performance is obtained using the proposed HybridSN for HSI classification.The source code can be found at https://github.com/gokriznastic/HybridSN.
科研通智能强力驱动
Strongly Powered by AbleSci AI