已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes

细胞色素P450 新陈代谢 化学 计算机科学 化学空间 药物发现 组合化学 生物化学
作者
Martin Šícho,Conrad Stork,Angelica Mazzolari,Christina de Bruyn Kops,Alessandro Pedretti,Bernard Testa,Giulio Vistoli,Daniel Svozil,Johannes Kirchmair
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (8): 3400-3412 被引量:72
标识
DOI:10.1021/acs.jcim.9b00376
摘要

In this work we present the third generation of FAst MEtabolizer (FAME 3), a collection of extra trees classifiers for the prediction of sites of metabolism (SoMs) in small molecules such as drugs, druglike compounds, natural products, agrochemicals, and cosmetics. FAME 3 was derived from the MetaQSAR database ( Pedretti et al. J. Med. Chem. 2018 , 61 , 1019 ), a recently published data resource on xenobiotic metabolism that contains more than 2100 substrates annotated with more than 6300 experimentally confirmed SoMs related to redox reactions, hydrolysis and other nonredox reactions, and conjugation reactions. In tests with holdout data, FAME 3 models reached competitive performance, with Matthews correlation coefficients (MCCs) ranging from 0.50 for a global model covering phase 1 and phase 2 metabolism, to 0.75 for a focused model for phase 2 metabolism. A model focused on cytochrome P450 metabolism yielded an MCC of 0.57. Results from case studies with several synthetic compounds, natural products, and natural product derivatives demonstrate the agreement between model predictions and literature data even for molecules with structural patterns clearly distinct from those present in the training data. The applicability domains of the individual models were estimated by a new, atom-based distance measure (FAMEscore) that is based on a nearest-neighbor search in the space of atom environments. FAME 3 is available via a public web service at https://nerdd.zbh.uni-hamburg.de/ and as a self-contained Java software package, free for academic and noncommercial research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助文静的涑采纳,获得10
刚刚
JXD发布了新的文献求助10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得30
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
聪明的鸭子完成签到 ,获得积分10
2秒前
希望天下0贩的0应助熙原采纳,获得10
3秒前
Yuka完成签到,获得积分10
6秒前
Carrie发布了新的文献求助10
6秒前
6秒前
坦率珍发布了新的文献求助10
6秒前
7秒前
kelo完成签到,获得积分10
8秒前
9秒前
斯文败类应助szj采纳,获得10
9秒前
水澈天澜完成签到,获得积分10
9秒前
Jasper应助szj采纳,获得10
9秒前
CodeCraft应助szj采纳,获得10
9秒前
Jasper应助szj采纳,获得10
10秒前
changping应助szj采纳,获得10
10秒前
小蘑菇应助szj采纳,获得10
10秒前
10秒前
搜集达人应助szj采纳,获得10
10秒前
CodeCraft应助szj采纳,获得30
10秒前
小马甲应助szj采纳,获得10
10秒前
科研通AI6应助szj采纳,获得10
10秒前
夏紫儿完成签到 ,获得积分10
11秒前
嗯_好发布了新的文献求助10
12秒前
15秒前
Hello应助CXS采纳,获得10
15秒前
15秒前
Akim应助没有昵称采纳,获得10
16秒前
czh发布了新的文献求助10
16秒前
kexi发布了新的文献求助10
19秒前
yys完成签到 ,获得积分10
19秒前
坦率珍完成签到,获得积分10
19秒前
小鱼发布了新的文献求助20
20秒前
威武天抒发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422