已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes

细胞色素P450 新陈代谢 化学 计算机科学 化学空间 药物发现 组合化学 生物化学
作者
Martin Šícho,Conrad Stork,Angelica Mazzolari,Christina de Bruyn Kops,Alessandro Pedretti,Bernard Testa,Giulio Vistoli,Daniel Svozil,Johannes Kirchmair
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (8): 3400-3412 被引量:72
标识
DOI:10.1021/acs.jcim.9b00376
摘要

In this work we present the third generation of FAst MEtabolizer (FAME 3), a collection of extra trees classifiers for the prediction of sites of metabolism (SoMs) in small molecules such as drugs, druglike compounds, natural products, agrochemicals, and cosmetics. FAME 3 was derived from the MetaQSAR database ( Pedretti et al. J. Med. Chem. 2018 , 61 , 1019 ), a recently published data resource on xenobiotic metabolism that contains more than 2100 substrates annotated with more than 6300 experimentally confirmed SoMs related to redox reactions, hydrolysis and other nonredox reactions, and conjugation reactions. In tests with holdout data, FAME 3 models reached competitive performance, with Matthews correlation coefficients (MCCs) ranging from 0.50 for a global model covering phase 1 and phase 2 metabolism, to 0.75 for a focused model for phase 2 metabolism. A model focused on cytochrome P450 metabolism yielded an MCC of 0.57. Results from case studies with several synthetic compounds, natural products, and natural product derivatives demonstrate the agreement between model predictions and literature data even for molecules with structural patterns clearly distinct from those present in the training data. The applicability domains of the individual models were estimated by a new, atom-based distance measure (FAMEscore) that is based on a nearest-neighbor search in the space of atom environments. FAME 3 is available via a public web service at https://nerdd.zbh.uni-hamburg.de/ and as a self-contained Java software package, free for academic and noncommercial research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡海楠完成签到,获得积分10
2秒前
可爱的函函应助Rita采纳,获得10
3秒前
注恤明完成签到,获得积分10
4秒前
我是老大应助hudiefeifei306采纳,获得10
4秒前
7秒前
传奇3应助紧张的毛衣采纳,获得10
7秒前
纯情大蟑螂完成签到 ,获得积分10
9秒前
小巧尔曼关注了科研通微信公众号
11秒前
竺七完成签到 ,获得积分10
11秒前
11秒前
12秒前
无敌橙汁oh完成签到 ,获得积分10
12秒前
13秒前
Z_jx完成签到,获得积分10
16秒前
Spine发布了新的文献求助10
18秒前
红星路吃饼子的派大星完成签到 ,获得积分10
18秒前
儒雅涵易完成签到 ,获得积分10
18秒前
22秒前
24秒前
25秒前
26秒前
科研通AI6应助火星上念梦采纳,获得10
26秒前
26秒前
小巧尔曼发布了新的文献求助10
27秒前
Akim应助明亮的河马采纳,获得10
28秒前
28秒前
29秒前
jacob258完成签到 ,获得积分10
30秒前
小蘑菇应助aaa采纳,获得10
32秒前
马畅完成签到 ,获得积分10
33秒前
33秒前
笨笨的秋蝶完成签到,获得积分10
35秒前
Spine完成签到,获得积分10
36秒前
zz爱学习完成签到,获得积分10
37秒前
研友_VZG7GZ应助谦让的小龙采纳,获得10
37秒前
阳光的海露完成签到,获得积分10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
Akim应助科研通管家采纳,获得10
40秒前
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356070
求助须知:如何正确求助?哪些是违规求助? 4487906
关于积分的说明 13971244
捐赠科研通 4388674
什么是DOI,文献DOI怎么找? 2411197
邀请新用户注册赠送积分活动 1403730
关于科研通互助平台的介绍 1377447