材料科学
薄膜晶体管
阈值电压
无定形固体
兴奋剂
溅射
表面粗糙度
退火(玻璃)
电子迁移率
分析化学(期刊)
薄膜
光电子学
晶体管
纳米技术
结晶学
复合材料
电压
图层(电子)
电气工程
化学
工程类
色谱法
作者
Kazunori Kurishima,Toshihide Nabatame,Nobuhiko Mitoma,Takio Kizu,Shinya Aikawa,Kazuhito Tsukagoshi,Akihiko Ohi,Toyohiro Chikyow,Atsushi Ogura
出处
期刊:Journal of vacuum science and technology
[American Vacuum Society]
日期:2018-10-17
卷期号:36 (6)
被引量:5
摘要
In this study, a co-sputtering method with In2O3 and SiC targets was used to fabricate carbon-doped In-Si-O (In1-xSixO1-yCy) as the channel material for oxide thin-film transistors (TFTs). Three types of In1-xSixO1-yCy channels, namely, In0.88Si0.12O0.99C0.01 (Si0.12C0.01), In0.76Si0.24O0.99C0.01 (Si0.24C0.01), and In0.60Si0.40O0.98C0.02 (Si0.40C0.02), were prepared. After annealing at 300 °C, the Si0.24C0.01 and Si0.40C0.02 films retained an amorphous structure, while the Si0.12C0.01 films exhibited a body-centered-cubic structure. However, all the In1-xSixO1-yCy films maintained a smooth surface with a root-mean-square roughness of approximately 0.28 nm, despite structural differences. Results showed that the conductivities of all the In1-xSixO1-yCy films were not sensitive to the O2 partial pressure during sputtering, indicating that In1-xSixO1-yCy films exhibit more stable electrical conductivity than other InOx-based oxides. The field-effect mobility (μFE) with respect to the Si concentration of In1-xSixO1-yCy and In1-xSixO TFTs showed very similar behavior. In contrast, the threshold voltage (Vth) behavior of the two types varied dramatically, with the In1-xSixO TFTs Vth value increasing drastically from −57.7 to 9.7 V with increasing Si concentration, and the Vth of In1-xSixO1-yCy TFTs increasing only gradually from −9.2 to 2.4 V. This indicates that incorporated carbon has a significant effect on Vth at a low Si concentration due to strong C—O bond formation. The highest bond dissociative energy occurs between O and C atoms in the In1-xSixO1-yCy channel. The amount of oxygen vacancy in Si0.12C0.01, Si0.24C0.01, and Si0.40C0.02 was 18.9%, 13.3%, and 12.9%, respectively. As a result, the Si0.12C0.01 TFT exhibited superior transistor properties of Vth = −9.2 V while maintaining a μFE of 32.4 cm2/Vs. Therefore, an In1-xSixO1-yCy film is significantly advantageous as a channel material for oxide TFTs given that it can result in mobility exceeding 30 cm2/Vs.
科研通智能强力驱动
Strongly Powered by AbleSci AI