Combining EEG signal processing with supervised methods for Alzheimer’s patients classification

模式识别(心理学) 特征提取 人工智能 脑电图 预处理器 小波 计算机科学 痴呆 语音识别 医学 疾病 精神科 病理
作者
Giulia Fiscon,Emanuel Weitschek,Alessio Cialini,Giovanni Felici,Paola Bertolazzi,Simona De Salvo,Alessia Bramanti,Placido Bramanti,Maria Cristina De Cola
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:18 (1) 被引量:121
标识
DOI:10.1186/s12911-018-0613-y
摘要

Alzheimer's Disease (AD) is a neurodegenaritive disorder characterized by a progressive dementia, for which actually no cure is known. An early detection of patients affected by AD can be obtained by analyzing their electroencephalography (EEG) signals, which show a reduction of the complexity, a perturbation of the synchrony, and a slowing down of the rhythms. In this work, we apply a procedure that exploits feature extraction and classification techniques to EEG signals, whose aim is to distinguish patient affected by AD from the ones affected by Mild Cognitive Impairment (MCI) and healthy control (HC) samples. Specifically, we perform a time-frequency analysis by applying both the Fourier and Wavelet Transforms on 109 samples belonging to AD, MCI, and HC classes. The classification procedure is designed with the following steps: (i) preprocessing of EEG signals; (ii) feature extraction by means of the Discrete Fourier and Wavelet Transforms; and (iii) classification with tree-based supervised methods. By applying our procedure, we are able to extract reliable human-interpretable classification models that allow to automatically assign the patients into their belonging class. In particular, by exploiting a Wavelet feature extraction we achieve 83%, 92%, and 79% of accuracy when dealing with HC vs AD, HC vs MCI, and MCI vs AD classification problems, respectively. Finally, by comparing the classification performances with both feature extraction methods, we find out that Wavelets analysis outperforms Fourier. Hence, we suggest it in combination with supervised methods for automatic patients classification based on their EEG signals for aiding the medical diagnosis of dementia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Felix完成签到 ,获得积分10
刚刚
guanzhuang完成签到,获得积分10
1秒前
1秒前
忐忑的小玉完成签到,获得积分10
1秒前
威武画板完成签到 ,获得积分10
2秒前
2秒前
1351274922发布了新的文献求助10
2秒前
暮寻屿苗完成签到 ,获得积分10
2秒前
3秒前
吧啦吧啦吧啦完成签到,获得积分10
3秒前
风姿物语完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
zxj完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
msp发布了新的文献求助10
8秒前
风中道罡发布了新的文献求助10
9秒前
丫丫完成签到,获得积分10
9秒前
wendinfgmei完成签到,获得积分10
10秒前
10秒前
哈h发布了新的文献求助10
10秒前
10秒前
10秒前
weber完成签到,获得积分10
11秒前
elgar612发布了新的文献求助10
11秒前
12秒前
也许飞鸟能到那个木屋完成签到,获得积分10
12秒前
阳生完成签到,获得积分10
12秒前
朝花夕拾完成签到,获得积分10
12秒前
12秒前
芝士椰果完成签到,获得积分10
13秒前
elliot完成签到,获得积分10
13秒前
14秒前
14秒前
伍思光完成签到,获得积分10
14秒前
谜记完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957265
求助须知:如何正确求助?哪些是违规求助? 3503314
关于积分的说明 11112746
捐赠科研通 3234499
什么是DOI,文献DOI怎么找? 1787911
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802330