Cross-Scale Reference-Based Light Field Super-Resolution

计算机科学 计算机视觉 人工智能 图像分辨率 光场 图像扭曲 分辨率(逻辑) 亚像素分辨率 图像(数学) 比例(比率) 图像处理 物理 数字图像处理 量子力学
作者
Mandan Zhao,Gaochang Wu,Yipeng Li,Xiangyang Hao,Lu Fang,Yebin Liu
出处
期刊:IEEE transactions on computational imaging 卷期号:4 (3): 406-418 被引量:27
标识
DOI:10.1109/tci.2018.2838457
摘要

Light helds suffer from a fundamental resolution tradeoff between the angular and the spatial domain. In this paper, we present a novel cross-scale light held super-resolution approach (up to 8× resolution gap) to super-resolve low-resolution (LR) light held images that are arranged around a high-resolution (HR) reference image. To bridge the enormous resolution gap between the cross-scale inputs, we introduce an intermediate view denoted as single image super-resolution (SISR) image, i.e., super-resolving LR input via single image based super-resolution scheme, which owns identical resolution as HR image yet lacks high-frequency details that SISR scheme cannot recover under such signihcant resolution gap. By treating the intermediate SISR image as the low-frequency part of our desired HR image, the remaining issue of recovering high-frequency components can be effectively solved by the proposed high-frequency compensation super-resolution (HCSR) method. Essentially, HCSR works by transferring as much as possible the high-frequency details from the HR reference view to the LR light held image views. Moreover, to solve the nontrivial warping problem that induced by the signihcant resolution gaps between the cross-scale inputs, we compute multiple disparity maps from the reference image to all the LR light held images, followed by a blending strategy to fuse for a rehned disparity map; hnally, a high-quality super-resolved light held can be obtained. The superiority of our proposed HCSR method is validated on extensive datasets including synthetic, real-world and challenging microscope scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33发布了新的文献求助10
2秒前
3秒前
阳光凡儿发布了新的文献求助10
3秒前
4秒前
gattina发布了新的文献求助30
5秒前
樊川完成签到,获得积分10
6秒前
执着凌兰关注了科研通微信公众号
8秒前
云浮山海发布了新的文献求助10
9秒前
希望天下0贩的0应助caroline采纳,获得20
9秒前
10秒前
我是老大应助高兴凡儿采纳,获得10
10秒前
准研究生完成签到,获得积分10
10秒前
Huck发布了新的文献求助10
10秒前
12秒前
脑洞疼应助ll200207采纳,获得10
13秒前
pluto应助赏光采纳,获得10
13秒前
irisjlj发布了新的文献求助10
14秒前
小宋给小宋的求助进行了留言
15秒前
15秒前
超的爱123完成签到 ,获得积分10
15秒前
阿苏完成签到,获得积分10
16秒前
SciGPT应助寒酥采纳,获得10
16秒前
StarryYY完成签到,获得积分10
16秒前
17秒前
achenchenchen完成签到,获得积分10
17秒前
满意的龙猫应助江小苔采纳,获得10
17秒前
乌禅发布了新的文献求助10
18秒前
jzy完成签到,获得积分10
20秒前
20秒前
小薇完成签到,获得积分10
20秒前
zylyl发布了新的文献求助10
21秒前
Philiadddd完成签到,获得积分10
21秒前
21秒前
21秒前
扎心应助明理的依柔采纳,获得10
22秒前
23秒前
StarryYY发布了新的文献求助10
23秒前
24秒前
24秒前
irisjlj完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958929
求助须知:如何正确求助?哪些是违规求助? 3505199
关于积分的说明 11122925
捐赠科研通 3236708
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871444
科研通“疑难数据库(出版商)”最低求助积分说明 802794