A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction

预言 计算机科学 颗粒过滤器 数据驱动 过程(计算) 数据挖掘 组分(热力学) 可靠性工程 人工智能 工程类 卡尔曼滤波器 热力学 操作系统 物理
作者
Linxia Liao,Felix Köttig
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:44: 191-199 被引量:203
标识
DOI:10.1016/j.asoc.2016.03.013
摘要

Graphical abstractDisplay Omitted HighlightsA hybrid/fusion prognostics framework to predict remaining useful life by combining the data-driven methods and model-based methods.Introduce a data-driven method to estimate the measurement model in a model-based particle filter framework.Introduce a data-driven method to predicted future measurement in long term prediction in a model-based particle filter framework.Shown improved prediction accuracy using battery as a case study. Remaining useful life prediction is one of the key requirements in prognostics and health management. While a system or component exhibits degradation during its life cycle, there are various methods to predict its future performance and assess the time frame until it does no longer perform its desired functionality. The proposed data-driven and model-based hybrid/fusion prognostics framework interfaces a classical Bayesian model-based prognostics approach, namely particle filter, with two data-driven methods in purpose of improving the prediction accuracy. The first data-driven method establishes the measurement model (inferring the measurements from the internal system state) to account for situations where the internal system state is not accessible through direct measurements. The second data-driven method extrapolates the measurements beyond the range of actually available measurements to feed them back to the model-based method which further updates the particles and their weights during the long-term prediction phase. By leveraging the strengths of the data-driven and model-based methods, the proposed fusion prognostics framework can bridge the gap between data-driven prognostics and model-based prognostics when both abundant historical data and knowledge of the physical degradation process are available. The proposed framework was successfully applied on lithium-ion battery remaining useful life prediction and achieved a significantly better accuracy compared to the classical particle filter approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kyrene发布了新的文献求助10
刚刚
erji25完成签到,获得积分10
刚刚
WHY发布了新的文献求助10
刚刚
sober发布了新的文献求助10
1秒前
脑洞疼应助酷酷的皮皮虾采纳,获得10
1秒前
田様应助dmr采纳,获得10
3秒前
3秒前
隐形曼青应助专一的书雪采纳,获得10
3秒前
muzililly发布了新的文献求助10
3秒前
NexusExplorer应助365采纳,获得10
4秒前
学术小虫发布了新的文献求助10
4秒前
tursun应助中恐采纳,获得200
4秒前
journey发布了新的文献求助10
5秒前
5秒前
ding应助huangyao采纳,获得10
5秒前
茜茜完成签到,获得积分10
6秒前
6秒前
6秒前
chen发布了新的文献求助10
6秒前
Tse发布了新的文献求助10
7秒前
喜喜喜喜完成签到,获得积分10
7秒前
RLF应助JJ采纳,获得10
7秒前
QQ发布了新的文献求助10
8秒前
9秒前
雾入云海完成签到 ,获得积分10
10秒前
10秒前
BioPolaris发布了新的文献求助10
11秒前
11秒前
斯文败类应助chen采纳,获得30
12秒前
12秒前
Furmark_14完成签到,获得积分10
12秒前
12秒前
13秒前
呆呆完成签到,获得积分10
13秒前
bkagyin应助pazuzu采纳,获得10
13秒前
科研通AI2S应助harden9159采纳,获得30
13秒前
汀烟应助采桑子采纳,获得10
14秒前
沉静的悒发布了新的文献求助10
14秒前
14秒前
科目三应助Olivia采纳,获得10
14秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222200
求助须知:如何正确求助?哪些是违规求助? 2870768
关于积分的说明 8172106
捐赠科研通 2537838
什么是DOI,文献DOI怎么找? 1369757
科研通“疑难数据库(出版商)”最低求助积分说明 645582
邀请新用户注册赠送积分活动 619333