已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction

预言 计算机科学 颗粒过滤器 数据驱动 过程(计算) 数据挖掘 组分(热力学) 可靠性工程 人工智能 工程类 卡尔曼滤波器 物理 热力学 操作系统
作者
Linxia Liao,Felix Köttig
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:44: 191-199 被引量:203
标识
DOI:10.1016/j.asoc.2016.03.013
摘要

Graphical abstractDisplay Omitted HighlightsA hybrid/fusion prognostics framework to predict remaining useful life by combining the data-driven methods and model-based methods.Introduce a data-driven method to estimate the measurement model in a model-based particle filter framework.Introduce a data-driven method to predicted future measurement in long term prediction in a model-based particle filter framework.Shown improved prediction accuracy using battery as a case study. Remaining useful life prediction is one of the key requirements in prognostics and health management. While a system or component exhibits degradation during its life cycle, there are various methods to predict its future performance and assess the time frame until it does no longer perform its desired functionality. The proposed data-driven and model-based hybrid/fusion prognostics framework interfaces a classical Bayesian model-based prognostics approach, namely particle filter, with two data-driven methods in purpose of improving the prediction accuracy. The first data-driven method establishes the measurement model (inferring the measurements from the internal system state) to account for situations where the internal system state is not accessible through direct measurements. The second data-driven method extrapolates the measurements beyond the range of actually available measurements to feed them back to the model-based method which further updates the particles and their weights during the long-term prediction phase. By leveraging the strengths of the data-driven and model-based methods, the proposed fusion prognostics framework can bridge the gap between data-driven prognostics and model-based prognostics when both abundant historical data and knowledge of the physical degradation process are available. The proposed framework was successfully applied on lithium-ion battery remaining useful life prediction and achieved a significantly better accuracy compared to the classical particle filter approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助自己个儿采纳,获得10
1秒前
赘婿应助辛勤的志泽采纳,获得10
2秒前
3秒前
Aha完成签到 ,获得积分10
4秒前
7秒前
7秒前
7秒前
许晴完成签到 ,获得积分10
8秒前
Fjj完成签到,获得积分10
10秒前
啾啾发布了新的文献求助100
10秒前
moiaoh完成签到,获得积分10
12秒前
12秒前
14秒前
18秒前
科研通AI5应助啾啾采纳,获得10
20秒前
胡一刀完成签到,获得积分10
21秒前
dreamboat完成签到,获得积分10
22秒前
22秒前
梁梁完成签到 ,获得积分10
24秒前
24秒前
沉静乾发布了新的文献求助10
24秒前
25秒前
27秒前
梁海萍发布了新的文献求助10
27秒前
EKo完成签到,获得积分10
28秒前
情怀应助zjx采纳,获得10
28秒前
畅快枕头完成签到 ,获得积分0
29秒前
SciHub完成签到 ,获得积分10
29秒前
草莓熊1215完成签到 ,获得积分10
30秒前
彭于晏应助科研通管家采纳,获得10
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
31秒前
爆米花应助科研通管家采纳,获得30
31秒前
李文豪发布了新的文献求助10
31秒前
唐泽雪穗发布了新的文献求助100
33秒前
34秒前
山山完成签到 ,获得积分10
37秒前
37秒前
哲000完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925756
求助须知:如何正确求助?哪些是违规求助? 4195911
关于积分的说明 13031268
捐赠科研通 3967492
什么是DOI,文献DOI怎么找? 2174627
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101628