Moving average template subtraction to remove stimulation artefacts in EEGs and LFPs recorded during deep brain stimulation

脑深部刺激 局部场电位 丘脑底核 减法 增采样 人工智能 计算机科学 重采样 模式识别(心理学) 滤波器(信号处理) 脑电图 计算机视觉 神经科学 心理学 数学 医学 帕金森病 病理 图像(数学) 算术 疾病
作者
Limin Sun,Hermann Hinrichs
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:266: 126-136 被引量:24
标识
DOI:10.1016/j.jneumeth.2016.03.020
摘要

Deep brain stimulation (DBS) is a well established therapy to treat movement disorders such as Parkinson's disease. More recently it has also been discussed as a therapy for certain psychiatric diseases. However, during active DBS the recordings of local field potentials (LFP) and the electroencephalogram (EEG) can be corrupted by substantial spike-type artefacts which need to be removed before any analysis. Here, we present a new method that we term ' Moving Average Subtraction' (MAS) that removes DBS artefacts by subtracting adaptive DBS artefact templates from the artefact contaminated data. In particular we have developed a resampling technique which is more efficient than upsampling for a precise reconstruction of the artefact shape without the need to oversample the EEGs. By applying this method we can derive undistorted signals even in case of the low sampling frequencies that are usual in clinical recordings. We applied the new technique to 12 data sets recorded at the surface and in various brain structures [subthalamic nucleus (STN), pedunculo pontine nucleus (PPN), Globus pallidus internus (GPi)] with 7 patients. Our results demonstrate the suppression of artefact related activity at the basic and harmonic frequencies of DBS. The new technique outperforms the non-adaptive template subtraction technique for the removal of high frequency artefact residuals without producing the spectral dips that occur with notch filter approaches. The new technique facilitates the analysis of higher frequency bands (Gamma activity) in LFPs and EEGs recorded during active DBS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulyt完成签到,获得积分10
2秒前
HH完成签到,获得积分20
2秒前
Lulu完成签到,获得积分20
2秒前
NexusExplorer应助沐风采纳,获得10
2秒前
3秒前
哈哈哈完成签到,获得积分20
3秒前
4秒前
4秒前
gcs007完成签到,获得积分10
5秒前
英俊的铭应助322628采纳,获得10
6秒前
Ava应助哈哈哈采纳,获得10
6秒前
6秒前
7秒前
7秒前
9秒前
1DAM发布了新的文献求助20
9秒前
10秒前
redstone完成签到,获得积分10
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
小黑鼠发布了新的文献求助10
13秒前
14秒前
顾矜应助起不出名字3采纳,获得10
15秒前
vsbsjj完成签到,获得积分10
16秒前
18秒前
妖精很通完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
刘碰蛋完成签到,获得积分10
20秒前
322628发布了新的文献求助10
20秒前
20秒前
20秒前
专注的问寒应助明亮惜天采纳,获得50
20秒前
21秒前
AN应助Feng采纳,获得30
22秒前
24秒前
科目三应助妖精很通采纳,获得10
24秒前
雾非雾完成签到,获得积分10
24秒前
chenyuns发布了新的文献求助10
26秒前
包容的雨泽发布了新的文献求助100
26秒前
小豆包发布了新的文献求助30
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778959
求助须知:如何正确求助?哪些是违规求助? 5644592
关于积分的说明 15450766
捐赠科研通 4910444
什么是DOI,文献DOI怎么找? 2642671
邀请新用户注册赠送积分活动 1590372
关于科研通互助平台的介绍 1544741