Wetting‐Assisted Crack‐ and Wrinkle‐Free Transfer of Wafer‐Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies

石墨烯 材料科学 润湿 层压 薄脆饼 基质(水族馆) 表面张力 石墨烯泡沫 纳米技术 复合材料 石墨烯纳米带 表面能 化学气相沉积 接触角 表面改性 聚合物 光电子学 化学工程 图层(电子) 工程类 地质学 物理 海洋学 量子力学
作者
Hyun Ho Kim,Seong‐Kyu Lee,Seung Goo Lee,Eunho Lee,Kilwon Cho
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:26 (13): 2070-2077 被引量:79
标识
DOI:10.1002/adfm.201504551
摘要

The polymer‐supported wet transfer of chemical vapor deposition‐grown graphene provides high‐quality large‐area graphene on a target substrate. The transfer‐induced defects that result from these processes, such as micrometer‐scale folds and cracks, have been regarded as an inevitable problem. Here, the transfer processes are thoroughly examined stage‐by‐stage and it is found that lamination wrinkles, which cause defects in the graphene, are generated as a result of the high contact angles of the trapped transfer medium liquids. Systematic theoretical and experimental studies demonstrate that a liquid droplet with a low surface tension trapped between the polymer/graphene film and the substrate minimizes lamination wrinkles during the transfer process by completely wetting the target substrate, regardless of the surface energy. In connection with these results, a simple and broadly applicable transfer method is developed using an organic liquid with a low surface tension to uniformly transfer high‐quality graphene onto arbitrary substrates, even onto superhydrophobic substrate. The graphene obtained using the proposed organic liquid transfer method displays better electrical and mechanical properties than the graphene transferred by the conventional method using water. This effective and practical transfer method provides an approach to obtaining high‐quality graphene for use in graphene‐based devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qiuer0011完成签到,获得积分10
1秒前
小小小完成签到,获得积分10
2秒前
动点子智慧完成签到,获得积分10
2秒前
3秒前
odell完成签到,获得积分10
3秒前
害羞的裘完成签到 ,获得积分10
3秒前
mj发布了新的文献求助10
4秒前
虚幻的海安完成签到,获得积分10
4秒前
碧蓝玉米发布了新的文献求助10
4秒前
呼噜完成签到,获得积分10
5秒前
ysy完成签到,获得积分10
5秒前
会飞的鱼完成签到,获得积分10
5秒前
6秒前
6秒前
ugliest完成签到,获得积分20
6秒前
Sophie的四月物语完成签到 ,获得积分20
7秒前
开放又亦发布了新的文献求助10
7秒前
小如要努力完成签到,获得积分10
7秒前
傲娇颖完成签到,获得积分10
8秒前
kol完成签到,获得积分10
8秒前
明亮寻绿发布了新的文献求助10
9秒前
十里桃花不徘徊完成签到,获得积分10
9秒前
Ava应助like采纳,获得10
9秒前
繁荣的映雁完成签到,获得积分10
10秒前
jayus完成签到,获得积分10
11秒前
魔力巴啦啦完成签到 ,获得积分10
12秒前
12秒前
GreenDuane完成签到 ,获得积分0
12秒前
怡心亭发布了新的文献求助20
13秒前
13秒前
Shan5完成签到,获得积分10
13秒前
执着夏山完成签到,获得积分10
15秒前
小灰灰完成签到 ,获得积分10
16秒前
16秒前
17秒前
未语的阳光完成签到 ,获得积分10
17秒前
mhl11完成签到,获得积分10
17秒前
pphe发布了新的文献求助10
18秒前
18秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158693
求助须知:如何正确求助?哪些是违规求助? 2809927
关于积分的说明 7884596
捐赠科研通 2468681
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012