A Unified Framework for Metric Transfer Learning

马氏距离 计算机科学 学习迁移 公制(单位) 人工智能 欧几里德距离 分歧(语言学) 领域(数学分析) 距离测量 相似性(几何) 机器学习 模式识别(心理学) 数据挖掘 数学 图像(数学) 语言学 数学分析 哲学 经济 运营管理
作者
Yonghui Xu,Sinno Jialin Pan,Hui Xiong,Qingyao Wu,Ronghua Luo,Huaqing Min,Hengjie Song
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:29 (6): 1158-1171 被引量:198
标识
DOI:10.1109/tkde.2017.2669193
摘要

Transfer learning has been proven to be effective for the problems where training data from a source domain and test data from a target domain are drawn from different distributions. To reduce the distribution divergence between the source domain and the target domain, many previous studies have been focused on designing and optimizing objective functions with the Euclidean distance to measure dissimilarity between instances. However, in some real-world applications, the Euclidean distance may be inappropriate to capture the intrinsic similarity or dissimilarity between instances. To deal with this issue, in this paper, we propose a metric transfer learning framework (MTLF) to encode metric learning in transfer learning. In MTLF, instance weights are learned and exploited to bridge the distributions of different domains, while Mahalanobis distance is learned simultaneously to maximize the intra-class distances and minimize the inter-class distances for the target domain. Unlike previous work where instance weights and Mahalanobis distance are trained in a pipelined framework that potentially leads to error propagation across different components, MTLF attempts to learn instance weights and a Mahalanobis distance in a parallel framework to make knowledge transfer across domains more effective. Furthermore, we develop general solutions to both classification and regression problems on top of MTLF, respectively. We conduct extensive experiments on several real-world datasets on object recognition, handwriting recognition, and WiFi location to verify the effectiveness of MTLF compared with a number of state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ewean完成签到,获得积分10
1秒前
2秒前
2秒前
好哥哥发布了新的文献求助10
4秒前
4秒前
4秒前
月yue发布了新的文献求助10
5秒前
5秒前
Enma发布了新的文献求助10
6秒前
毛豆爸爸完成签到,获得积分0
6秒前
科研通AI2S应助梅残风暖采纳,获得10
6秒前
7秒前
开心的章鱼哥完成签到,获得积分10
7秒前
7秒前
8秒前
Lion完成签到 ,获得积分10
8秒前
9秒前
缥缈耷发布了新的文献求助10
10秒前
Lucas应助linxi采纳,获得10
12秒前
13秒前
bkagyin应助洛神采纳,获得10
13秒前
13秒前
畅快不平发布了新的文献求助10
14秒前
botanist发布了新的文献求助10
14秒前
lawson完成签到,获得积分10
16秒前
积极慕梅应助冰糖采纳,获得10
17秒前
HZW给kevin的求助进行了留言
17秒前
18秒前
草木发布了新的文献求助10
19秒前
长情伊发布了新的文献求助30
20秒前
menglanjun关注了科研通微信公众号
21秒前
景景好完成签到,获得积分10
23秒前
25秒前
王力完成签到,获得积分10
27秒前
29秒前
30秒前
30秒前
GIANTim完成签到,获得积分10
30秒前
chen完成签到 ,获得积分10
33秒前
小蘑菇应助呆萌的不凡采纳,获得10
34秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792465
关于积分的说明 7802933
捐赠科研通 2448664
什么是DOI,文献DOI怎么找? 1302761
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237