亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning from Inventory Availability Information: Evidence from Field Experiments on Amazon

采购 产品(数学) 内生性 亚马逊雨林 营销 业务 计算机科学 经济 运筹学 计量经济学 数学 生态学 几何学 生物
作者
Ruomeng Cui,Dennis Zhang,Achal Bassamboo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:65 (3): 1216-1235 被引量:123
标识
DOI:10.1287/mnsc.2017.2950
摘要

Many online retailers provide real-time inventory availability information. Customers can learn from the inventory level and update their beliefs about the product. Thus, consumer purchasing behavior may be impacted by the availability information. Based on a unique setting from Amazon lightning deals, which displays the percentage of inventory consumed in real time, we explore whether and how consumers learn from inventory availability information. Identifying the effect of learning on consumer decisions has been a notoriously difficult empirical question because of endogeneity concerns. We address this issue by running two randomized field experiments on Amazon in which we create exogenous shocks on the inventory availability information for a random subset of Amazon lightning deals. In addition, we track the dynamic purchasing behavior and inventory information for 23,665 lightning deals offered by Amazon and use their panel structure to further explore the relative effect of learning. We find evidence of consumers learning from inventory information: a decrease in product availability causally attracts more sales in the future; in particular, a 10% increase in past claims leads to a 2.08% increase in cart add-ins in the next hour. Moreover, we show that buyers use observable product characteristics to moderate their inferences when learning from others; a deep discount weakens the learning momentum, whereas a good product rating amplifies the learning momentum. This paper was accepted by Serguei Netessine, operations management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ceeray23发布了新的文献求助20
1秒前
CC完成签到 ,获得积分10
2秒前
专注的问寒应助Kevin采纳,获得50
7秒前
13秒前
Lucas应助等待雁桃采纳,获得30
15秒前
风华正茂完成签到 ,获得积分10
20秒前
哈哈哈哈嗝屁完成签到,获得积分20
23秒前
24秒前
清浅发布了新的文献求助10
28秒前
30秒前
橙汁发布了新的文献求助10
33秒前
33秒前
无花果应助橙汁采纳,获得10
36秒前
39秒前
40秒前
43秒前
shaylie完成签到 ,获得积分10
45秒前
CR7应助搞怪的砖家采纳,获得20
48秒前
欢欢发布了新的文献求助10
50秒前
52秒前
细心从阳完成签到,获得积分10
55秒前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
1分钟前
天才玩家H完成签到,获得积分10
1分钟前
1分钟前
XP完成签到 ,获得积分10
1分钟前
1分钟前
龙06驳回了泷生应助
1分钟前
林一发布了新的文献求助20
1分钟前
科研通AI2S应助Ww采纳,获得10
1分钟前
背后晓兰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664111
求助须知:如何正确求助?哪些是违规求助? 4857755
关于积分的说明 15107180
捐赠科研通 4822567
什么是DOI,文献DOI怎么找? 2581565
邀请新用户注册赠送积分活动 1535750
关于科研通互助平台的介绍 1493984