已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Vitamin D and Depression: Cellular and Regulatory Mechanisms

兴奋性突触后电位 抑制性突触后电位 谷氨酸受体 NMDA受体 维生素D与神经学 化学 肌醇 内分泌学 受体 内科学 神经科学 生物 生物化学 医学
作者
Michael J. Berridge
出处
期刊:Pharmacological Reviews [American Society for Pharmacology & Experimental Therapeutics]
卷期号:69 (2): 80-92 被引量:154
标识
DOI:10.1124/pr.116.013227
摘要

Depression is caused by a change in neural activity resulting from an increase in glutamate that drives excitatory neurons and may be responsible for the decline in the activity and number of the GABAergic inhibitory neurons. This imbalance between the excitatory and inhibitory neurons may contribute to the onset of depression. At the cellular level there is an increase in the concentration of intracellular Ca2+ within the inhibitory neurons that is driven by an increase in entry through the NMDA receptors (NMDARs) and through activation of the phosphoinositide signaling pathway that generates inositol trisphosphate (InsP3) that releases Ca2+ from the internal stores. The importance of these two pathways in driving the elevation of Ca2+ is supported by the fact that depression can be alleviated by ketamine that inhibits the NMDARs and scopolamine that inhibits the M1 receptors that drive InsP3/Ca2+ pathway. This increase in Ca2+ not only contributes to depression but it may also explain why individuals with depression have a strong likelihood of developing Alzheimer's disease. The enhanced levels of Ca2+ may stimulate the formation of Aβ to initiate the onset and progression of Alzheimer9s disease. Just how vitamin D acts to reduce depression is unclear. The phenotypic stability hypothesis argues that vitamin D acts by reducing the increased neuronal levels of Ca2+ that are driving depression. This action of vitamin D depends on its function to maintain the expression of the Ca2+ pumps and buffers that reduce Ca2+ levels, which may explain how it acts to reduce the onset of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蜜HHH发布了新的文献求助10
2秒前
悦耳的子默完成签到 ,获得积分10
4秒前
幽幽完成签到,获得积分20
4秒前
小柚子完成签到 ,获得积分10
5秒前
orixero应助桂圆妈妈采纳,获得10
5秒前
隐形的雁完成签到,获得积分10
6秒前
7秒前
一号小玩家完成签到,获得积分10
9秒前
wab完成签到,获得积分0
10秒前
faker完成签到,获得积分10
10秒前
12秒前
一言矣完成签到 ,获得积分10
12秒前
LL完成签到 ,获得积分10
13秒前
清秀的乐儿完成签到,获得积分20
14秒前
feng关注了科研通微信公众号
14秒前
Se1fer发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
思源应助海的终章采纳,获得10
18秒前
19秒前
19秒前
Diligency发布了新的文献求助10
21秒前
木木发布了新的文献求助10
21秒前
听白发布了新的文献求助10
21秒前
23秒前
包容的鞋垫完成签到,获得积分10
24秒前
25秒前
今后应助繁荣的念双采纳,获得10
25秒前
26秒前
29秒前
30秒前
31秒前
海的终章发布了新的文献求助10
31秒前
笨笨西牛完成签到 ,获得积分10
32秒前
桂圆妈妈发布了新的文献求助10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497161
求助须知:如何正确求助?哪些是违规求助? 3081748
关于积分的说明 9169147
捐赠科研通 2774867
什么是DOI,文献DOI怎么找? 1522615
邀请新用户注册赠送积分活动 706176
科研通“疑难数据库(出版商)”最低求助积分说明 703222