转染
分子生物学
生物
细胞周期
流式细胞术
细胞生长
污渍
重组DNA
细胞培养
细胞
基因
生物化学
遗传学
作者
Kan Liu,Chaofei Zhao,Jianwen Chen,Shengpan Wu,Yuanxin Yao,Chong Wu,Guoxiong Luo,Xu Zhang
出处
期刊:PubMed
日期:2016-06-01
卷期号:32 (6): 764-9
被引量:3
摘要
Objective To establish selenoprotein P, plasma 1 (SEPP1) gene recombinant lentiviral vector and investigate the effect of SEPP1 on the proliferation of human clear cell renal cell carcinoma (ccRCC) cells. Methods cDNA sequence of SEPP1 was cloned from the total cDNA of HEK293T cells by PCR. Then, the cDNA fragment was combined with the pLV-EGFP(2A)Puro vector and the constructed plasmid pLV-EGFP(2A)Puro-SEPP1 was transfected into HEK293T cells for packaging the virus. Forty-eight hours after transfected with the virus supernatant, the level of SEPP1 protein in 769-P and 786-O cells were tested by Western blotting. Cells were divided into recombinant lentivirus-infected cells, empty vector lentivirus-infected cells and the blank control cells. Cell proliferation rate was detected by MTS assay, colony forming ability was evaluated by plate clony formation assay and cell cycle change was assayed by flow cytometry after transfected with pLV-EGFP(2A)Puro-SEPP1 or empty pLV-EGFP(2A)Puro vector. Results Enzyme digestion analysis and DNA sequencing showed that the recombinant plasmid pLV-EGFP(2A)Puro-SEPP1 was constructed successfully. After being infected by the virus supernatant, the 786-O and 769-P cells expressed EGFP. Compared with the empty vector group and the blank control group, expression level of SEPP1 in the experimental group was much higher. The cell proliferative ability was inhibited in the cells overexpressing SEPP1, and the colony forming ability of SEPP1-overexpressed cells evidently decreased. Cell cycle was arrested in G2/M phase in 786-O cells overexpressing SEPP1. Conclusion The recombinant plasmid pLV-EGFP(2A)Puro-SEPP1 has been constructed successfully. Overexpression of SEPP1 could significantly reduce the proliferation rate of 786-O and 769P cells, and cause G2/M phase arrest of 786-O cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI