WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas

环境科学 卫星 云量 降水 气候学 风速 多元插值 土地覆盖 仰角(弹道) 气象学 协变量 气候变化 大气科学 地理 气候模式 土地利用 云计算 统计 数学 地质学 计算机科学 土木工程 双线性插值 航空航天工程 工程类 几何学 操作系统 海洋学
作者
Stephen E. Fick,Robert J. Hijmans
出处
期刊:International Journal of Climatology [Wiley]
卷期号:37 (12): 4302-4315 被引量:13217
标识
DOI:10.1002/joc.5086
摘要

ABSTRACT We created a new dataset of spatially interpolated monthly climate data for global land areas at a very high spatial resolution (approximately 1 km 2 ). We included monthly temperature (minimum, maximum and average), precipitation, solar radiation, vapour pressure and wind speed, aggregated across a target temporal range of 1970–2000, using data from between 9000 and 60 000 weather stations. Weather station data were interpolated using thin‐plate splines with covariates including elevation, distance to the coast and three satellite‐derived covariates: maximum and minimum land surface temperature as well as cloud cover, obtained with the MODIS satellite platform. Interpolation was done for 23 regions of varying size depending on station density. Satellite data improved prediction accuracy for temperature variables 5–15% (0.07–0.17 °C), particularly for areas with a low station density, although prediction error remained high in such regions for all climate variables. Contributions of satellite covariates were mostly negligible for the other variables, although their importance varied by region. In contrast to the common approach to use a single model formulation for the entire world, we constructed the final product by selecting the best performing model for each region and variable. Global cross‐validation correlations were ≥ 0.99 for temperature and humidity, 0.86 for precipitation and 0.76 for wind speed. The fact that most of our climate surface estimates were only marginally improved by use of satellite covariates highlights the importance having a dense, high‐quality network of climate station data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
HITvagary完成签到,获得积分0
2秒前
不敢装睡完成签到,获得积分10
2秒前
3秒前
聂落雁完成签到,获得积分10
3秒前
芋泥丸丸发布了新的文献求助10
3秒前
xuejie驳回了慕青应助
3秒前
ZSC发布了新的文献求助10
4秒前
4秒前
跳跃发布了新的文献求助10
5秒前
追寻梦之发布了新的文献求助10
5秒前
5秒前
6秒前
小庄完成签到 ,获得积分10
6秒前
大胆的弼完成签到,获得积分10
7秒前
7秒前
yiyi发布了新的文献求助10
7秒前
ruru发布了新的文献求助10
7秒前
8秒前
可爱的函函应助辉腾采纳,获得10
8秒前
8秒前
王蕊发布了新的文献求助10
9秒前
9秒前
lxgz发布了新的文献求助10
9秒前
9秒前
Ava应助dd采纳,获得10
9秒前
bamboo应助细心怀亦采纳,获得20
9秒前
10秒前
10秒前
星辰大海应助TaoTaooooII采纳,获得10
10秒前
su123发布了新的文献求助10
10秒前
lawang发布了新的文献求助10
11秒前
zhonglv7应助lin采纳,获得10
11秒前
elang发布了新的文献求助10
11秒前
11秒前
123发布了新的文献求助10
11秒前
lawang发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524