激进的
光催化
光化学
可见光谱
羟基自由基
化学
羟基化
催化作用
材料科学
有机化学
光电子学
酶
作者
Sanjay Nagarajan,Nathan Skillen,Federica Fina,Guan Zhang,Chamnan Randorn,Linda A. Lawton,John T. S. Irvine,Peter K. J. Robertson
标识
DOI:10.1016/j.jphotochem.2016.10.034
摘要
A simple method for determining hydroxyl radical yields on semiconductor photocatalysts is highly desirable, especially when comparing different photocatalyst materials. This paper reports the screening of a selection of visible light active photocatalysts such as Pt-C3N4, 5% LaCr doped SrTiO3, Sr0.95Cr0.05TiO3 and Yellow TiO2 and compares them against WO3 and ultra violet (UV) light activated TiO2 P25 (standard commercial catalysts) based on their oxidative strengths (OH radical producing capability) using a well-studied chemical probe–coumarin. 7-hydroxycoumarin, the only fluorescent hydroxylation product of this reaction can then be measured to indirectly quantify the OH radicals produced. P25 under UV light produced the highest concentration of OH radicals (16.9 μM), followed by WO3 (0.56 μM) and Pt-C3N4 (0.25 μM). The maximum OH radical production rate for P25, WO3 and Pt-C3N4 were also determined and found to be 35.6 μM/hr, 0.28 μM/h and 0.88 μM/h respectively. The other visible light activated photocatalysts did not produce any OH radicals primarily as a result of their electronic structure. Furthermore, it was concluded that, if any visible light absorbing photocatalysts are to be fabricated in future for the purpose of photocatalytic oxidation, their OH radical producing rates (and quantities) should be determined and compared to P25.
科研通智能强力驱动
Strongly Powered by AbleSci AI