材料科学
光伏
钙钛矿(结构)
光伏系统
纳米技术
制作
薄膜
工程物理
光电子学
化学工程
电气工程
医学
工程类
病理
替代医学
作者
Jiawen Xiao,Lang Liu,Deliang Zhang,Nicholas De Marco,Jin‐Wook Lee,Oliver Lin,Qi Chen,Yang Yang
标识
DOI:10.1002/aenm.201700491
摘要
Abstract The halide perovskite (PVSK) materials (with ABX 3 formulation) have emerged as “dream materials” for photovoltaic (PV) applications due to their remarkable physical properties such as high optical absorption coefficient, carrier mobility, long carrier diffusion lengths, etc. These properties have enabled the PV devices to reach higher than 20% power conversion efficiencies (PCE) in record time. The further pursuit of higher PCE and improved stability brings forth increasing interests in so‐called “mixed composition” PVSK materials, consisting of partial substitution of the A, B, and/or X‐sites with alternative elements/molecules of similar size. Herein, we highlight the recent advances in developing mixed PVSK for PVs and their relevant optoelectronic properties. We mainly focus on mixed PVSK materials in the form of polycrystalline thin films, but also discuss nanostructured and two‐dimensional (2D) PVSK materials due to the increasing interest of broad readership. Efforts are exerted to elucidate the design principles of mixed PVSK and fabrication techniques for high performance optoelectronic devices, which help deepen our fundamental understanding of mixed PVSK systems. We hope this review will shed light onto the design and synthesis of mixed PVSK materials to further the progress of PVSK photovoltaics towards higher efficiencies and longer lifetimes.
科研通智能强力驱动
Strongly Powered by AbleSci AI