痛觉超敏
周围神经损伤
神经病理性疼痛
医学
小胶质细胞
加巴喷丁
一氧化氮
药理学
痛觉过敏
背根神经节
神经损伤
坐骨神经
化学
周围神经病变
神经科学
伤害
内科学
麻醉
外围设备
内分泌学
格列本脲
TRPV1型
坐骨神经损伤
炎症
病理
受体
生物
糖尿病
替代医学
作者
Roland G. W. Staal,Tanzilya Khayrullina,Hong Zhang,Scott Francis Davis,S. Fallon,Manuel Cajina,Megan Nattini,Andrew Hu,Zhou Hua,Suresh B. Poda,Stevin H. Zorn,Gamini Chandrasena,Elena Dale,Brian Cambpell,Lars Christian B. Rønn,Gordon Munro,Thomas Møller
标识
DOI:10.1016/j.ejphar.2016.11.031
摘要
Neuropathic pain is a debilitating, chronic condition with a significant unmet need for effective treatment options. Recent studies have demonstrated that in addition to neurons, non-neuronal cells such as microglia contribute to the initiation and maintenance of allodynia in rodent models of neuropathic pain. The Ca2+- activated K+ channel, KCa3.1 is critical for the activation of immune cells, including the CNS-resident microglia. In order to evaluate the role of KCa3.1 in the maintenance of mechanical allodynia following peripheral nerve injury, we used senicapoc, a stable and highly potent KCa3.1 inhibitor. In primary cultured microglia, senicapoc inhibited microglial nitric oxide and IL-1β release. In vivo, senicapoc showed high CNS penetrance and when administered to rats with peripheral nerve injury, it significantly reversed tactile allodynia similar to the standard of care, gabapentin. In contrast to gabapentin, senicapoc achieved efficacy without any overt impact on locomotor activity. Together, the data demonstrate that the KCa3.1 inhibitor senicapoc is effective at reducing mechanical hypersensitivity in a rodent model of peripheral nerve injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI