硝化作用
铵
水生生态系统
环境化学
硝酸盐
沉积物
氮气
水生植物
反硝化
微观世界
氮气循环
化学
矿化(土壤科学)
微生物燃料电池
孔隙水压力
环境科学
生态学
生物
地质学
古生物学
水生植物
岩土工程
有机化学
电极
物理化学
阳极
作者
Peng Xu,Enrong Xiao,Dan Xu,Yin Zhou,Feng He,Biyun Liu,Lei Zeng,Zhenbin Wu
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2017-02-27
卷期号:12 (2): e0172757-e0172757
被引量:49
标识
DOI:10.1371/journal.pone.0172757
摘要
Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o), closed-circuit (SMFC-c), aquatic plants with open-circuit (P-SMFC-o) and aquatic plants with closed-circuit (P-SMFC-c). The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the sediments under closed-circuit. The coupled P-SMFC system has shown good potential for the efficient removal of internal nitrogen.
科研通智能强力驱动
Strongly Powered by AbleSci AI