特征向量
本征函数
数学
反向
数学分析
折射率
间断(语言学)
传输(电信)
力矩(物理)
反问题
几何学
物理
光学
量子力学
电气工程
工程类
作者
Drossos Gintides,Nikolaos Pallikarakis
出处
期刊:Inverse Problems
[IOP Publishing]
日期:2017-01-31
卷期号:33 (5): 055006-055006
被引量:12
标识
DOI:10.1088/1361-6420/aa5bf0
摘要
We consider the inverse spectral problem of determining a spherically symmetric and discontinuous refractive index n(r) from interior transmission eigenvalues. Using Liouville's transform, we investigate the asymptotic properties of the solution of an auxiliary initial value problem for large wave numbers and the asymptotic behaviour of the characteristic determinants derived from the eigenfunction expansions. Next, we assume that we know all transmission eigenvalues with spherically symmetric eigenfunctions and prove under some conditions that the transformed discontinuity of the refractive index can be determined. Finally we prove that the knowledge of all transmission eigenvalues including multiplicities uniquely determines n(r), under the assumption that n(0) is known and either n(r) > 1 or 0 < n(r) < 1 by using a moment type result and applying Müntz's theorem.
科研通智能强力驱动
Strongly Powered by AbleSci AI