Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification

计算机科学 计算机视觉 振动 人工智能 情态动词 模态分析 工作模态分析 实时计算 工程类 声学 物理 化学 高分子化学
作者
Yongchao Yang,Charles Dorn,Tyler Mancini,Zachary Talken,Garrett T. Kenyon,Charles R. Farrar,David Mascareñas
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:85: 567-590 被引量:328
标识
DOI:10.1016/j.ymssp.2016.08.041
摘要

Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路千琴发布了新的文献求助10
刚刚
拼搏的亦丝完成签到,获得积分10
4秒前
佳析陈完成签到,获得积分10
6秒前
10秒前
风趣问蕊发布了新的文献求助10
11秒前
Hello应助热情的笑白采纳,获得10
12秒前
勤劳坤发布了新的文献求助10
15秒前
科学家完成签到,获得积分10
15秒前
JimmyChin发布了新的文献求助10
17秒前
五木完成签到,获得积分10
19秒前
Crystal完成签到 ,获得积分10
25秒前
李爱国应助善良的广缘采纳,获得10
27秒前
斯文败类应助JimmyChin采纳,获得10
31秒前
31秒前
123完成签到,获得积分10
34秒前
仍仍完成签到,获得积分10
34秒前
星辰大海应助Diplogen采纳,获得10
35秒前
35秒前
Zx_1993应助科研通管家采纳,获得10
41秒前
情怀应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
今后应助科研通管家采纳,获得10
41秒前
乐乐应助科研通管家采纳,获得10
41秒前
科目三应助科研通管家采纳,获得10
41秒前
Owen应助科研通管家采纳,获得10
42秒前
小蘑菇应助科研通管家采纳,获得30
42秒前
浮游应助科研通管家采纳,获得10
42秒前
BowieHuang应助科研通管家采纳,获得10
42秒前
传奇3应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
今后应助科研通管家采纳,获得10
42秒前
Ava应助科研通管家采纳,获得10
42秒前
Lucas应助科研通管家采纳,获得10
42秒前
Owen应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
46秒前
51秒前
mmmmmMM完成签到 ,获得积分10
51秒前
橙啊程发布了新的文献求助10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645604
关于积分的说明 14675724
捐赠科研通 4586775
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460989