Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification

计算机科学 计算机视觉 振动 人工智能 情态动词 模态分析 工作模态分析 实时计算 工程类 声学 物理 化学 高分子化学
作者
Yongchao Yang,Charles Dorn,Tyler Mancini,Zachary Talken,Garrett T. Kenyon,Charles R. Farrar,David Mascareñas
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:85: 567-590 被引量:328
标识
DOI:10.1016/j.ymssp.2016.08.041
摘要

Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙抬头完成签到,获得积分10
刚刚
共享精神应助乐萱采纳,获得20
刚刚
Hello应助xxx采纳,获得10
1秒前
1秒前
gugugaga发布了新的文献求助10
2秒前
2秒前
鱼圆杂铺发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Orange应助魈玖采纳,获得10
4秒前
隐形曼青应助123456采纳,获得10
5秒前
傻傻的小丑孩完成签到 ,获得积分10
5秒前
李健的小迷弟应助lulu1234采纳,获得10
6秒前
开门啊菇凉完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
哈哈的哈哈完成签到,获得积分10
8秒前
8秒前
Una发布了新的文献求助10
8秒前
许菁发布了新的文献求助10
8秒前
9秒前
Darker发布了新的文献求助10
9秒前
紧张的小松鼠完成签到,获得积分10
10秒前
xytyyy发布了新的文献求助10
11秒前
迅速冬天发布了新的文献求助10
11秒前
害怕的丑完成签到 ,获得积分20
11秒前
爱炖鸽子的咕咕完成签到,获得积分10
11秒前
13秒前
13秒前
烤冷面应助戈笙gg采纳,获得10
14秒前
14秒前
15秒前
解语花发布了新的文献求助10
15秒前
浮游应助魈玖采纳,获得10
15秒前
15秒前
拉姆发布了新的文献求助10
16秒前
Bash发布了新的文献求助10
16秒前
17秒前
hit10024完成签到,获得积分10
19秒前
小洁完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069974
求助须知:如何正确求助?哪些是违规求助? 4291171
关于积分的说明 13369782
捐赠科研通 4111427
什么是DOI,文献DOI怎么找? 2251490
邀请新用户注册赠送积分活动 1256663
关于科研通互助平台的介绍 1189212