Cross-session classification of mental workload levels using EEG and an adaptive deep learning model

计算机科学 人工智能 自编码 分类器(UML) 脑电图 工作量 特征选择 机器学习 会话(web分析) 特征提取 模式识别(心理学) 深度学习 语音识别 心理学 万维网 操作系统 精神科
作者
Zhong Yin,Jianhua Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:33: 30-47 被引量:136
标识
DOI:10.1016/j.bspc.2016.11.013
摘要

Evaluation of operator Mental Workload (MW) levels via ongoing electroencephalogram (EEG) is quite promising in Human-Machine (HM) collaborative task environment to alarm the temporal operator performance degradation. However, accurate recognition of MW states via a static pattern classifier with training and testing EEG signals recoded on separate days is particularly challenging as EEG features are differently distributed across different sessions. Motivated by the superiority of the deep learning approaches for stable feature abstractions in higher levels, an adaptive Stacked Denoising AutoEncoder (SDAE) is developed to tackling such cross-session MW classification task in which the weights of the shallow hidden neurons could be adaptively updated during the testing procedure. The generalization capability of the adaptive SDAE is first evaluated under within/cross-session conditions. Then, we compare it with the state of the art MW classifiers under different feature selection and the noise corruption paradigms. The results indicate a higher performance of the adaptive SDAE in dealing with the cross-session EEG features. By analyzing the optimal step length, the data augmentation scheme and the computational cost for iterative tuning, the adaptive SDAE is also demonstrated to be acceptable for online implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富伊完成签到,获得积分10
刚刚
bamboo完成签到,获得积分10
1秒前
luo发布了新的文献求助10
1秒前
lll发布了新的文献求助10
1秒前
明理珩发布了新的文献求助10
1秒前
2秒前
2秒前
爱学习发布了新的文献求助10
2秒前
左鸣发布了新的文献求助10
3秒前
赫哲瀚发布了新的文献求助30
3秒前
刻苦大门完成签到 ,获得积分10
4秒前
可靠F完成签到,获得积分20
4秒前
ccon完成签到,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助30
6秒前
干爆瓶颈发布了新的文献求助10
6秒前
Ava应助alu采纳,获得10
6秒前
深情安青应助xixi采纳,获得10
7秒前
公西翠萱发布了新的文献求助10
7秒前
喵喵发布了新的文献求助10
7秒前
科研通AI2S应助miao3718采纳,获得10
8秒前
研友_VZG7GZ应助koi采纳,获得10
8秒前
8秒前
wuyi完成签到,获得积分10
8秒前
8秒前
搜集达人应助牛牛牛采纳,获得10
9秒前
叶子麻发布了新的文献求助10
9秒前
整齐碧玉发布了新的文献求助10
9秒前
9秒前
深情安青应助悦耳听芹采纳,获得10
10秒前
天天向上发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
null完成签到,获得积分10
10秒前
荷包蛋完成签到,获得积分20
10秒前
星辰大海应助zhang-leo采纳,获得10
11秒前
aaa发布了新的文献求助30
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972