已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Personalized prediction of transcranial magnetic stimulation clinical response in patients with treatment-refractory depression using neuroimaging biomarkers and machine learning

背外侧前额叶皮质 磁刺激 扣带回前部 神经影像学 接收机工作特性 医学 生物标志物 个性化医疗 功能磁共振成像 神经科学 心理学 前额叶皮质 内科学 刺激 生物信息学 认知 化学 生物 生物化学
作者
Helene Hopman,Sandra S. M. Chan,Winnie C.W. Chu,Hanna Lu,Chun‐Yu Tse,Steven Wai Ho Chau,Linda Lam,Arthur F.T. Mak,Sebastiaan F.W. Neggers
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:290: 261-271 被引量:33
标识
DOI:10.1016/j.jad.2021.04.081
摘要

Functional connectivity between the left dorsolateral prefrontal cortex (DLPFC) and subgenual cingulate (sgACC) may serve as a biomarker for transcranial magnetic stimulation (rTMS) treatment response. The first aim was to establish whether this finding is veridical or artifactually induced by the pre-processing method. Furthermore, alternative biomarkers were identified and the clinical utility for personalized medicine was examined. Resting-state fMRI data were collected in medication-refractory depressed patients (n = 70, 16 males) before undergoing neuronavigated left DLPFC rTMS. Seed-based analyses were performed with and without global signal regression pre-processing to identify biomarkers of short-term and long-term treatment response. Receiver Operating Characteristic curve and supervised machine learning analyses were applied to assess the clinical utility of these biomarkers for the classification of categorical rTMS response. Regardless of the pre-processing method, DLPFC-sgACC connectivity was not associated with treatment outcome. Instead, poorer connectivity between the sgACC and three clusters (peak locations: frontal pole, superior parietal lobule, occipital cortex) and DLPFC-central opercular cortex were observed in long-term nonresponders. The identified connections could serve as acceptable to excellent markers. Combining the features using supervised machine learning reached accuracy rates of 95.35% (CI=82.94–100.00) and 88.89% (CI=63.96–100.00) in the cross-validation and test dataset, respectively. The sample size was moderate, and features for machine learning were based on group differences. Long-term nonresponders showed greater disrupted connectivity in regions involving the central executive network. Our findings may aid the development of personalized medicine for medication-refractory depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
FODCOC完成签到,获得积分10
1秒前
昀宇完成签到 ,获得积分10
2秒前
不秃燃的小老弟完成签到 ,获得积分10
2秒前
DengLingjie应助韩凡采纳,获得10
3秒前
yan完成签到 ,获得积分10
4秒前
Honor完成签到 ,获得积分10
4秒前
yutang完成签到 ,获得积分10
4秒前
萱棚完成签到 ,获得积分10
4秒前
4秒前
格物致知完成签到,获得积分10
4秒前
fusheng完成签到 ,获得积分10
5秒前
Pauline完成签到 ,获得积分10
5秒前
yangsi完成签到 ,获得积分10
5秒前
fengliurencai完成签到,获得积分10
5秒前
677发布了新的文献求助10
5秒前
碧蓝雁风完成签到 ,获得积分10
5秒前
皮皮的鹿完成签到,获得积分10
5秒前
天侠客完成签到,获得积分10
6秒前
大头完成签到 ,获得积分10
6秒前
陌予完成签到 ,获得积分10
7秒前
安详初蓝完成签到 ,获得积分10
7秒前
8秒前
古月完成签到,获得积分10
9秒前
浮生完成签到 ,获得积分10
9秒前
少川完成签到 ,获得积分10
9秒前
wei jie完成签到 ,获得积分10
10秒前
11秒前
Denmark完成签到 ,获得积分10
11秒前
Nick完成签到 ,获得积分10
12秒前
柏林寒冬应助苏乘风采纳,获得10
12秒前
夜航星完成签到,获得积分10
12秒前
鬲木发布了新的文献求助10
13秒前
材料摆渡人完成签到 ,获得积分10
13秒前
有趣的银完成签到,获得积分10
13秒前
博修完成签到,获得积分10
13秒前
小m完成签到 ,获得积分10
14秒前
葡萄味的果茶完成签到 ,获得积分10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959928
求助须知:如何正确求助?哪些是违规求助? 3506172
关于积分的说明 11128138
捐赠科研通 3238123
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024