A Combination Model of Radiomics Features and Clinical Biomarkers as a Nomogram to Differentiate Nonadvanced From Advanced Liver Fibrosis: A Retrospective Study

列线图 无线电技术 医学 队列 接收机工作特性 内科学 放射科 回顾性队列研究 曲线下面积
作者
Peng Hu,Xi Hu,Yudong Lin,Xiaojing Yu,Xinwei Tao,Jihong Sun,Xia Wu
出处
期刊:Academic Radiology [Elsevier]
卷期号:28: S45-S54 被引量:12
标识
DOI:10.1016/j.acra.2020.08.029
摘要

To develop and validate a combination model of radiomics features and clinical biomarkers to differentiate nonadvanced from advanced liver fibrosis.One hundred and eight consecutive patients with pathologically diagnosed liver fibrosis were randomly placed in a training or a test cohort at a ratio of 2:1. For each patient, 1674 radiomics features extracted from portal venous phase CT images were reduced by using minimum redundancy and maximum relevant. The optimal features identified were incorporated into the radiomics model. Eight clinical markers were evaluated. Integrated with clinical independent risk factors, a combination model was built. A nomogram was also established from the model. The performance of the models was assessed. Finally, a decision curve analysis was performed to estimate the clinical usefulness of the nomogram.The radiomics model established using five features achieved a promising level of discrimination between nonadvanced and advanced liver fibrosis. The combination model incorporated the radiomics signature with two clinical biomarkers and showed good calibration and discrimination. The training and testing cohort results of the radiomics model were area under curve values 0.864 and 0.772, accuracy 77.8% and 77.8%, sensitivity 86.7% and 73.1%, and specificity 71.4% and 90.0%, respectively. For the combination model, the training and testing cohort results were area under curve values 0.915 and 0.897, accuracy 83.3% and 86.1%, sensitivity 86% and 80.6%, and specificity 82.6% and 92.3%, respectively. The decision curve indicated the nomogram has potential in clinical application.This combination model provides a promising approach for differentiating non-advanced from advanced liver fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助iufan采纳,获得10
刚刚
洗碗净发布了新的文献求助10
刚刚
刚刚
浪太医完成签到,获得积分10
1秒前
1秒前
1秒前
二重音完成签到,获得积分10
2秒前
2秒前
线条发布了新的文献求助10
2秒前
CLF完成签到,获得积分10
2秒前
3秒前
萧凡灵完成签到,获得积分10
3秒前
英俊的铭应助pengyang采纳,获得10
3秒前
3秒前
深情安青应助tyhmugua采纳,获得10
3秒前
小七发布了新的文献求助10
4秒前
zi发布了新的文献求助10
5秒前
樱桃发布了新的文献求助10
6秒前
D段发布了新的文献求助10
7秒前
史迪仔发布了新的文献求助10
7秒前
Croix完成签到 ,获得积分10
8秒前
Lucas应助明明采纳,获得10
8秒前
8秒前
伯丛筠完成签到 ,获得积分10
8秒前
研友_Z34DG8完成签到,获得积分10
9秒前
852应助Hecate采纳,获得10
10秒前
Owen应助冷酷莫茗采纳,获得10
10秒前
科研通AI2S应助江边鸟采纳,获得20
10秒前
体贴山河完成签到 ,获得积分20
11秒前
盒子应助Aslan2024采纳,获得10
11秒前
天马行空发布了新的文献求助10
11秒前
斯文天曼发布了新的文献求助10
11秒前
Shinchan完成签到 ,获得积分10
12秒前
璃儿完成签到 ,获得积分10
12秒前
畜牧笑笑完成签到,获得积分10
12秒前
有川洋一完成签到 ,获得积分10
12秒前
小二郎应助Nick采纳,获得10
13秒前
13秒前
14秒前
钱子默完成签到,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825