Prediction of Liver Disease using Gradient Boost Machine Learning Techniques with Feature Scaling

机器学习 梯度升压 人工智能 计算机科学 Boosting(机器学习) 多层感知器 分类器(UML) 感知器 逻辑回归 特征(语言学) 特征提取 随机森林 人工神经网络 语言学 哲学
作者
G. Shobana,K. Umamaheswari
标识
DOI:10.1109/iccmc51019.2021.9418333
摘要

Lifestyle diseases have become common these days and a sedentary way of life has paved the way for a range of syndromes and unknown diseases. Identification or diagnosis of the disease at an early stage is most crucial. This greatly helps in the prevention of the disease at an early stage with minimal medications. Traditional methods involve physical examination and lab results. Identification of the Liver disease at an early stage is very difficult as the symptoms of the diseases are visible only at a later stage of the disease. The Application of Machine learning models would help in the early diagnosis of the disease and hence facilitates in identifying crucial factors that lead to liver damage. In this paper, we propose a method of feature reduction using Recursive Feature Elimination and applying the Machine learning boosting algorithms to enhance the prediction accuracy. Basic machine learning models were applied to the dataset, where Logistic regression and Multi-Layer Perceptron had higher prediction accuracies with reduced features. Boosting algorithms like CatBoost, LGBM Classifier, XGBoost and Gradient Boost were applied to the dataset. The impact of feature reduction was investigated on the Gradient boosting machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传统的斓完成签到,获得积分10
1秒前
戈尔德尔应助ZONG采纳,获得10
1秒前
YJ发布了新的文献求助10
2秒前
2秒前
him12完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
懒羊羊大王完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
SciGPT应助mermer采纳,获得10
5秒前
6秒前
王晓雪完成签到,获得积分10
6秒前
lxx发布了新的文献求助10
6秒前
迷路桃子完成签到,获得积分10
6秒前
SciGPT应助leeleetyo采纳,获得30
7秒前
轻松的冥王星完成签到,获得积分10
7秒前
万能图书馆应助挚zhi采纳,获得10
8秒前
ambush1314发布了新的文献求助10
9秒前
9秒前
灰灰完成签到,获得积分10
9秒前
开朗咖啡完成签到,获得积分10
9秒前
yanfang完成签到,获得积分20
9秒前
FashionBoy应助那些年采纳,获得10
9秒前
大模型应助erdongsir采纳,获得10
9秒前
10秒前
10秒前
10秒前
董浩珍发布了新的文献求助10
10秒前
mochen发布了新的文献求助10
10秒前
迷路桃子发布了新的文献求助10
10秒前
11秒前
blackhawkwu发布了新的文献求助10
11秒前
12秒前
yun尘世发布了新的文献求助10
12秒前
三伏天发布了新的文献求助10
12秒前
Lei关闭了Lei文献求助
12秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440935
求助须知:如何正确求助?哪些是违规求助? 3037347
关于积分的说明 8968463
捐赠科研通 2725838
什么是DOI,文献DOI怎么找? 1495109
科研通“疑难数据库(出版商)”最低求助积分说明 691128
邀请新用户注册赠送积分活动 687861