Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging

压缩传感 奇异值分解 算法 计算机科学 基质(化学分析) 奇异值 反问题 稀疏矩阵 人工智能 模式识别(心理学) 数学 特征向量 物理 数学分析 材料科学 量子力学 复合材料 高斯分布
作者
Bokun Tian,Xiaoling Zhang,Liang Li,Ling Pu,Liming Pu,Jun Shi,Shunjun Wei
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (9): 1751-1751 被引量:11
标识
DOI:10.3390/rs13091751
摘要

Because of the three-dimensional (3D) imaging scene’s sparsity, compressed sensing (CS) algorithms can be used for linear array synthetic aperture radar (LASAR) 3D sparse imaging. CS algorithms usually achieve high-quality sparse imaging at the expense of computational efficiency. To solve this problem, a fast Bayesian compressed sensing algorithm via relevance vector machine (FBCS–RVM) is proposed in this paper. The proposed method calculates the maximum marginal likelihood function under the framework of the RVM to obtain the optimal hyper-parameters; the scattering units corresponding to the non-zero optimal hyper-parameters are extracted as the target-areas in the imaging scene. Then, based on the target-areas, we simplify the measurement matrix and conduct sparse imaging. In addition, under low signal to noise ratio (SNR), low sampling rate, or high sparsity, the target-areas cannot always be extracted accurately, which probably contain several elements whose scattering coefficients are too small and closer to 0 compared to other elements. Those elements probably make the diagonal matrix singular and irreversible; the scattering coefficients cannot be estimated correctly. To solve this problem, the inverse matrix of the singular matrix is replaced with the generalized inverse matrix obtained by the truncated singular value decomposition (TSVD) algorithm to estimate the scattering coefficients correctly. Based on the rank of the singular matrix, those elements with small scattering coefficients are extracted and eliminated to obtain more accurate target-areas. Both simulation and experimental results show that the proposed method can improve the computational efficiency and imaging quality of LASAR 3D imaging compared with the state-of-the-art CS-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助拾忆采纳,获得10
刚刚
安利完成签到,获得积分10
刚刚
CSX完成签到,获得积分10
刚刚
forever发布了新的文献求助10
1秒前
1秒前
1秒前
asdfzxcv应助六尺巷采纳,获得10
1秒前
XLC发布了新的文献求助10
2秒前
2秒前
深情安青应助WQ采纳,获得10
2秒前
2秒前
Gyz发布了新的文献求助10
3秒前
4秒前
烟花应助lindoudou采纳,获得10
5秒前
纯真怜梦发布了新的文献求助10
5秒前
QQ发布了新的文献求助10
5秒前
两张发布了新的文献求助10
6秒前
ddd666完成签到,获得积分10
7秒前
核桃发布了新的文献求助10
8秒前
活泼的牛青完成签到 ,获得积分10
9秒前
9秒前
星辰大海应助####采纳,获得10
10秒前
10秒前
11秒前
沙茶酱菜卷完成签到 ,获得积分10
11秒前
汉堡包应助两张采纳,获得10
12秒前
12秒前
14秒前
ding应助六尺巷采纳,获得10
14秒前
CSX发布了新的文献求助10
15秒前
15秒前
感动代荷完成签到 ,获得积分10
15秒前
善学以致用应助NXK采纳,获得10
15秒前
16秒前
16秒前
112233发布了新的文献求助10
16秒前
Jasper应助Angora采纳,获得10
17秒前
17秒前
Gyz完成签到,获得积分10
17秒前
核桃发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559