Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging

压缩传感 奇异值分解 算法 计算机科学 基质(化学分析) 奇异值 反问题 稀疏矩阵 人工智能 模式识别(心理学) 数学 特征向量 物理 量子力学 数学分析 复合材料 高斯分布 材料科学
作者
Bokun Tian,Xiaoling Zhang,Liang Li,Ling Pu,Liming Pu,Jun Shi,Shunjun Wei
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 1751-1751 被引量:11
标识
DOI:10.3390/rs13091751
摘要

Because of the three-dimensional (3D) imaging scene’s sparsity, compressed sensing (CS) algorithms can be used for linear array synthetic aperture radar (LASAR) 3D sparse imaging. CS algorithms usually achieve high-quality sparse imaging at the expense of computational efficiency. To solve this problem, a fast Bayesian compressed sensing algorithm via relevance vector machine (FBCS–RVM) is proposed in this paper. The proposed method calculates the maximum marginal likelihood function under the framework of the RVM to obtain the optimal hyper-parameters; the scattering units corresponding to the non-zero optimal hyper-parameters are extracted as the target-areas in the imaging scene. Then, based on the target-areas, we simplify the measurement matrix and conduct sparse imaging. In addition, under low signal to noise ratio (SNR), low sampling rate, or high sparsity, the target-areas cannot always be extracted accurately, which probably contain several elements whose scattering coefficients are too small and closer to 0 compared to other elements. Those elements probably make the diagonal matrix singular and irreversible; the scattering coefficients cannot be estimated correctly. To solve this problem, the inverse matrix of the singular matrix is replaced with the generalized inverse matrix obtained by the truncated singular value decomposition (TSVD) algorithm to estimate the scattering coefficients correctly. Based on the rank of the singular matrix, those elements with small scattering coefficients are extracted and eliminated to obtain more accurate target-areas. Both simulation and experimental results show that the proposed method can improve the computational efficiency and imaging quality of LASAR 3D imaging compared with the state-of-the-art CS-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
faye完成签到,获得积分10
刚刚
任性的皮卡丘完成签到 ,获得积分10
1秒前
明理夏槐发布了新的文献求助10
1秒前
王正浩完成签到 ,获得积分10
2秒前
天马行空完成签到,获得积分10
3秒前
just完成签到,获得积分10
3秒前
锦秋完成签到 ,获得积分10
4秒前
qingxinhuo完成签到 ,获得积分10
4秒前
shuqi完成签到 ,获得积分10
5秒前
刘zx完成签到,获得积分10
6秒前
隐形芯完成签到 ,获得积分10
6秒前
张真狗完成签到,获得积分10
7秒前
8秒前
喜悦松完成签到,获得积分10
10秒前
娟娟完成签到 ,获得积分10
10秒前
plumcute完成签到,获得积分10
11秒前
手术刀完成签到 ,获得积分10
11秒前
11秒前
吨吨完成签到,获得积分10
12秒前
沫荔完成签到 ,获得积分10
12秒前
14秒前
来日方长应助张真狗采纳,获得10
15秒前
Tianju完成签到,获得积分10
15秒前
qx发布了新的文献求助10
15秒前
苏芳完成签到,获得积分10
16秒前
135完成签到 ,获得积分10
16秒前
16秒前
松鼠15111完成签到,获得积分10
17秒前
科研通AI2S应助整齐百褶裙采纳,获得10
18秒前
小黑完成签到 ,获得积分20
18秒前
熊博士完成签到,获得积分10
19秒前
21秒前
墨尔根戴青完成签到,获得积分10
21秒前
小北驳回了scm应助
21秒前
123完成签到,获得积分10
22秒前
zxj完成签到 ,获得积分20
23秒前
23秒前
小龙完成签到,获得积分10
23秒前
和谐的醉山完成签到,获得积分10
24秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027