已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging

压缩传感 奇异值分解 算法 计算机科学 基质(化学分析) 奇异值 反问题 稀疏矩阵 人工智能 模式识别(心理学) 数学 特征向量 物理 量子力学 数学分析 复合材料 高斯分布 材料科学
作者
Bokun Tian,Xiaoling Zhang,Liang Li,Ling Pu,Liming Pu,Jun Shi,Shunjun Wei
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 1751-1751 被引量:11
标识
DOI:10.3390/rs13091751
摘要

Because of the three-dimensional (3D) imaging scene’s sparsity, compressed sensing (CS) algorithms can be used for linear array synthetic aperture radar (LASAR) 3D sparse imaging. CS algorithms usually achieve high-quality sparse imaging at the expense of computational efficiency. To solve this problem, a fast Bayesian compressed sensing algorithm via relevance vector machine (FBCS–RVM) is proposed in this paper. The proposed method calculates the maximum marginal likelihood function under the framework of the RVM to obtain the optimal hyper-parameters; the scattering units corresponding to the non-zero optimal hyper-parameters are extracted as the target-areas in the imaging scene. Then, based on the target-areas, we simplify the measurement matrix and conduct sparse imaging. In addition, under low signal to noise ratio (SNR), low sampling rate, or high sparsity, the target-areas cannot always be extracted accurately, which probably contain several elements whose scattering coefficients are too small and closer to 0 compared to other elements. Those elements probably make the diagonal matrix singular and irreversible; the scattering coefficients cannot be estimated correctly. To solve this problem, the inverse matrix of the singular matrix is replaced with the generalized inverse matrix obtained by the truncated singular value decomposition (TSVD) algorithm to estimate the scattering coefficients correctly. Based on the rank of the singular matrix, those elements with small scattering coefficients are extracted and eliminated to obtain more accurate target-areas. Both simulation and experimental results show that the proposed method can improve the computational efficiency and imaging quality of LASAR 3D imaging compared with the state-of-the-art CS-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YaoHui发布了新的文献求助10
2秒前
lyw发布了新的文献求助10
2秒前
科研通AI6应助寇博翔采纳,获得10
5秒前
yumiao发布了新的文献求助10
6秒前
华仔应助vayne采纳,获得10
6秒前
dajiejie发布了新的文献求助10
6秒前
nenoaowu发布了新的文献求助10
7秒前
9秒前
11秒前
bkagyin应助nenoaowu采纳,获得10
11秒前
ZJX应助MyAI采纳,获得10
13秒前
13秒前
自然的铅笔完成签到 ,获得积分10
14秒前
yyyyyyypxxxx发布了新的文献求助30
15秒前
Sunbird完成签到,获得积分10
16秒前
毕蓝血完成签到 ,获得积分10
17秒前
17秒前
善良的花菜完成签到 ,获得积分10
17秒前
19秒前
王博林发布了新的文献求助30
20秒前
葡萄糖完成签到 ,获得积分10
20秒前
文静的海发布了新的文献求助10
23秒前
隐形曼青应助一吨好运采纳,获得10
24秒前
cccccgggmmm发布了新的文献求助30
25秒前
sc完成签到,获得积分20
26秒前
粗犷的夏槐完成签到 ,获得积分10
26秒前
27秒前
领导范儿应助高高采纳,获得10
28秒前
johnhush完成签到 ,获得积分10
28秒前
Lucas应助小巧尔蓝采纳,获得20
29秒前
英俊的铭应助李琼琼采纳,获得10
29秒前
科研小白关注了科研通微信公众号
29秒前
CodeCraft应助工大搬砖战神采纳,获得10
30秒前
oyfff完成签到 ,获得积分10
31秒前
番茄酱发布了新的文献求助10
32秒前
文静的海完成签到,获得积分10
32秒前
33秒前
34秒前
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396