Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging

压缩传感 奇异值分解 算法 计算机科学 基质(化学分析) 奇异值 反问题 稀疏矩阵 人工智能 模式识别(心理学) 数学 特征向量 物理 量子力学 数学分析 复合材料 高斯分布 材料科学
作者
Bokun Tian,Xiaoling Zhang,Liang Li,Ling Pu,Liming Pu,Jun Shi,Shunjun Wei
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (9): 1751-1751 被引量:11
标识
DOI:10.3390/rs13091751
摘要

Because of the three-dimensional (3D) imaging scene’s sparsity, compressed sensing (CS) algorithms can be used for linear array synthetic aperture radar (LASAR) 3D sparse imaging. CS algorithms usually achieve high-quality sparse imaging at the expense of computational efficiency. To solve this problem, a fast Bayesian compressed sensing algorithm via relevance vector machine (FBCS–RVM) is proposed in this paper. The proposed method calculates the maximum marginal likelihood function under the framework of the RVM to obtain the optimal hyper-parameters; the scattering units corresponding to the non-zero optimal hyper-parameters are extracted as the target-areas in the imaging scene. Then, based on the target-areas, we simplify the measurement matrix and conduct sparse imaging. In addition, under low signal to noise ratio (SNR), low sampling rate, or high sparsity, the target-areas cannot always be extracted accurately, which probably contain several elements whose scattering coefficients are too small and closer to 0 compared to other elements. Those elements probably make the diagonal matrix singular and irreversible; the scattering coefficients cannot be estimated correctly. To solve this problem, the inverse matrix of the singular matrix is replaced with the generalized inverse matrix obtained by the truncated singular value decomposition (TSVD) algorithm to estimate the scattering coefficients correctly. Based on the rank of the singular matrix, those elements with small scattering coefficients are extracted and eliminated to obtain more accurate target-areas. Both simulation and experimental results show that the proposed method can improve the computational efficiency and imaging quality of LASAR 3D imaging compared with the state-of-the-art CS-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心的冷雪完成签到,获得积分10
刚刚
2秒前
Whispers发布了新的文献求助10
3秒前
4秒前
666应助四夕采纳,获得10
5秒前
自信以蓝发布了新的文献求助10
5秒前
6秒前
9秒前
doctor杨发布了新的文献求助10
9秒前
9秒前
Jasper应助zhaoyaoshi采纳,获得10
9秒前
Jesenia完成签到,获得积分10
9秒前
10秒前
11秒前
tuanheqi应助restudy68采纳,获得50
13秒前
开心蛋挞发布了新的文献求助10
15秒前
liujunjie发布了新的文献求助10
15秒前
小艾应助开朗的菠萝头采纳,获得10
16秒前
16秒前
18秒前
Jasper应助忐忑的远山采纳,获得10
18秒前
19秒前
所所应助guoguoguo采纳,获得10
19秒前
tassssadar完成签到,获得积分10
20秒前
20秒前
么么鸭宝宝完成签到,获得积分20
20秒前
21秒前
22秒前
23秒前
zi完成签到,获得积分10
24秒前
danielbest1234完成签到,获得积分10
25秒前
王淳完成签到 ,获得积分10
25秒前
舒舒发布了新的文献求助30
26秒前
李健的粉丝团团长应助kk采纳,获得10
27秒前
27秒前
lanbing802发布了新的文献求助10
27秒前
doctor杨完成签到,获得积分10
30秒前
30秒前
降智小甜饼完成签到,获得积分10
33秒前
LS发布了新的文献求助10
36秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348825
求助须知:如何正确求助?哪些是违规求助? 2975035
关于积分的说明 8667313
捐赠科研通 2655762
什么是DOI,文献DOI怎么找? 1454196
科研通“疑难数据库(出版商)”最低求助积分说明 673253
邀请新用户注册赠送积分活动 663659