亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging

压缩传感 奇异值分解 算法 计算机科学 基质(化学分析) 奇异值 反问题 稀疏矩阵 人工智能 模式识别(心理学) 数学 特征向量 物理 数学分析 材料科学 量子力学 复合材料 高斯分布
作者
Bokun Tian,Xiaoling Zhang,Liang Li,Ling Pu,Liming Pu,Jun Shi,Shunjun Wei
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (9): 1751-1751 被引量:11
标识
DOI:10.3390/rs13091751
摘要

Because of the three-dimensional (3D) imaging scene’s sparsity, compressed sensing (CS) algorithms can be used for linear array synthetic aperture radar (LASAR) 3D sparse imaging. CS algorithms usually achieve high-quality sparse imaging at the expense of computational efficiency. To solve this problem, a fast Bayesian compressed sensing algorithm via relevance vector machine (FBCS–RVM) is proposed in this paper. The proposed method calculates the maximum marginal likelihood function under the framework of the RVM to obtain the optimal hyper-parameters; the scattering units corresponding to the non-zero optimal hyper-parameters are extracted as the target-areas in the imaging scene. Then, based on the target-areas, we simplify the measurement matrix and conduct sparse imaging. In addition, under low signal to noise ratio (SNR), low sampling rate, or high sparsity, the target-areas cannot always be extracted accurately, which probably contain several elements whose scattering coefficients are too small and closer to 0 compared to other elements. Those elements probably make the diagonal matrix singular and irreversible; the scattering coefficients cannot be estimated correctly. To solve this problem, the inverse matrix of the singular matrix is replaced with the generalized inverse matrix obtained by the truncated singular value decomposition (TSVD) algorithm to estimate the scattering coefficients correctly. Based on the rank of the singular matrix, those elements with small scattering coefficients are extracted and eliminated to obtain more accurate target-areas. Both simulation and experimental results show that the proposed method can improve the computational efficiency and imaging quality of LASAR 3D imaging compared with the state-of-the-art CS-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lingo完成签到 ,获得积分10
1秒前
小蝶完成签到 ,获得积分10
4秒前
冰茉莉发布了新的文献求助10
6秒前
东风徐来完成签到,获得积分10
7秒前
齐阳春完成签到 ,获得积分10
15秒前
27秒前
asukaray发布了新的文献求助10
32秒前
冰茉莉完成签到 ,获得积分10
33秒前
34秒前
Stephhen完成签到 ,获得积分10
36秒前
有只kangaroo完成签到 ,获得积分10
37秒前
徐沛发布了新的文献求助10
40秒前
41秒前
asukaray完成签到,获得积分10
44秒前
123完成签到 ,获得积分10
45秒前
46秒前
48秒前
48秒前
shhoing应助科研通管家采纳,获得10
49秒前
shhoing应助科研通管家采纳,获得10
49秒前
Hello应助甘123采纳,获得20
49秒前
xiahua发布了新的文献求助10
50秒前
bull9518完成签到,获得积分20
52秒前
徐沛完成签到,获得积分20
54秒前
55秒前
58秒前
drjyang完成签到,获得积分10
59秒前
絮1111完成签到 ,获得积分10
1分钟前
知性的藏鸟完成签到 ,获得积分10
1分钟前
xiahua完成签到,获得积分10
1分钟前
身法马可波罗完成签到 ,获得积分10
1分钟前
1分钟前
ABJ完成签到 ,获得积分10
1分钟前
chiaoyin999发布了新的文献求助30
1分钟前
Delight完成签到 ,获得积分0
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
科研通AI6应助金乌采纳,获得10
1分钟前
顾矜应助乐观的寒荷采纳,获得10
1分钟前
超级绫完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558402
求助须知:如何正确求助?哪些是违规求助? 4643393
关于积分的说明 14670950
捐赠科研通 4584754
什么是DOI,文献DOI怎么找? 2515137
邀请新用户注册赠送积分活动 1489224
关于科研通互助平台的介绍 1459791