Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging

压缩传感 奇异值分解 算法 计算机科学 基质(化学分析) 奇异值 反问题 稀疏矩阵 人工智能 模式识别(心理学) 数学 特征向量 物理 量子力学 数学分析 复合材料 高斯分布 材料科学
作者
Bokun Tian,Xiaoling Zhang,Liang Li,Ling Pu,Liming Pu,Jun Shi,Shunjun Wei
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 1751-1751 被引量:11
标识
DOI:10.3390/rs13091751
摘要

Because of the three-dimensional (3D) imaging scene’s sparsity, compressed sensing (CS) algorithms can be used for linear array synthetic aperture radar (LASAR) 3D sparse imaging. CS algorithms usually achieve high-quality sparse imaging at the expense of computational efficiency. To solve this problem, a fast Bayesian compressed sensing algorithm via relevance vector machine (FBCS–RVM) is proposed in this paper. The proposed method calculates the maximum marginal likelihood function under the framework of the RVM to obtain the optimal hyper-parameters; the scattering units corresponding to the non-zero optimal hyper-parameters are extracted as the target-areas in the imaging scene. Then, based on the target-areas, we simplify the measurement matrix and conduct sparse imaging. In addition, under low signal to noise ratio (SNR), low sampling rate, or high sparsity, the target-areas cannot always be extracted accurately, which probably contain several elements whose scattering coefficients are too small and closer to 0 compared to other elements. Those elements probably make the diagonal matrix singular and irreversible; the scattering coefficients cannot be estimated correctly. To solve this problem, the inverse matrix of the singular matrix is replaced with the generalized inverse matrix obtained by the truncated singular value decomposition (TSVD) algorithm to estimate the scattering coefficients correctly. Based on the rank of the singular matrix, those elements with small scattering coefficients are extracted and eliminated to obtain more accurate target-areas. Both simulation and experimental results show that the proposed method can improve the computational efficiency and imaging quality of LASAR 3D imaging compared with the state-of-the-art CS-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助辞树采纳,获得10
1秒前
风笛发布了新的文献求助10
1秒前
3秒前
浮游应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
LaTeXer应助科研通管家采纳,获得100
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
ANIVIA完成签到,获得积分10
4秒前
弱水应助科研通管家采纳,获得30
5秒前
LaTeXer应助科研通管家采纳,获得100
5秒前
11235应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
hpj8128应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得150
5秒前
LaTeXer应助科研通管家采纳,获得100
5秒前
5秒前
5秒前
5秒前
jaslek完成签到,获得积分10
6秒前
arrebol发布了新的文献求助10
7秒前
顾矜应助是真的不吃鱼采纳,获得10
9秒前
Jiangpeng完成签到,获得积分10
11秒前
白翊辰发布了新的文献求助10
13秒前
14秒前
自由归尘完成签到,获得积分10
15秒前
小麦子儿完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助150
19秒前
卢莹完成签到,获得积分10
19秒前
小蘑菇应助阿巴阿巴采纳,获得10
20秒前
共享精神应助乐观的海采纳,获得10
20秒前
23秒前
24秒前
科目三应助wh1t3zZ采纳,获得10
24秒前
chen发布了新的文献求助10
27秒前
嘻嘻滑呀发布了新的文献求助10
27秒前
xW12123完成签到,获得积分10
28秒前
ZoZine完成签到 ,获得积分10
28秒前
快乐一江发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914643
求助须知:如何正确求助?哪些是违规求助? 4188890
关于积分的说明 13009369
捐赠科研通 3957796
什么是DOI,文献DOI怎么找? 2169937
邀请新用户注册赠送积分活动 1188140
关于科研通互助平台的介绍 1095818