Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging

压缩传感 奇异值分解 算法 计算机科学 基质(化学分析) 奇异值 反问题 稀疏矩阵 人工智能 模式识别(心理学) 数学 特征向量 物理 量子力学 数学分析 复合材料 高斯分布 材料科学
作者
Bokun Tian,Xiaoling Zhang,Liang Li,Ling Pu,Liming Pu,Jun Shi,Shunjun Wei
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (9): 1751-1751 被引量:11
标识
DOI:10.3390/rs13091751
摘要

Because of the three-dimensional (3D) imaging scene’s sparsity, compressed sensing (CS) algorithms can be used for linear array synthetic aperture radar (LASAR) 3D sparse imaging. CS algorithms usually achieve high-quality sparse imaging at the expense of computational efficiency. To solve this problem, a fast Bayesian compressed sensing algorithm via relevance vector machine (FBCS–RVM) is proposed in this paper. The proposed method calculates the maximum marginal likelihood function under the framework of the RVM to obtain the optimal hyper-parameters; the scattering units corresponding to the non-zero optimal hyper-parameters are extracted as the target-areas in the imaging scene. Then, based on the target-areas, we simplify the measurement matrix and conduct sparse imaging. In addition, under low signal to noise ratio (SNR), low sampling rate, or high sparsity, the target-areas cannot always be extracted accurately, which probably contain several elements whose scattering coefficients are too small and closer to 0 compared to other elements. Those elements probably make the diagonal matrix singular and irreversible; the scattering coefficients cannot be estimated correctly. To solve this problem, the inverse matrix of the singular matrix is replaced with the generalized inverse matrix obtained by the truncated singular value decomposition (TSVD) algorithm to estimate the scattering coefficients correctly. Based on the rank of the singular matrix, those elements with small scattering coefficients are extracted and eliminated to obtain more accurate target-areas. Both simulation and experimental results show that the proposed method can improve the computational efficiency and imaging quality of LASAR 3D imaging compared with the state-of-the-art CS-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助0000采纳,获得30
1秒前
rosexu发布了新的文献求助10
1秒前
爆米花应助sv采纳,获得10
1秒前
1秒前
搞怪网络完成签到,获得积分10
3秒前
3秒前
liudiqiu应助lh采纳,获得10
3秒前
命运的X号发布了新的文献求助10
3秒前
3秒前
满座关注了科研通微信公众号
4秒前
FashionBoy应助侦察兵采纳,获得10
4秒前
4秒前
个性尔槐完成签到,获得积分10
4秒前
esdeath完成签到,获得积分10
4秒前
13504544355完成签到 ,获得积分10
4秒前
陶醉的蜜蜂完成签到 ,获得积分10
4秒前
5秒前
坦率井完成签到,获得积分10
5秒前
5秒前
善学以致用应助代萌萌采纳,获得10
5秒前
5秒前
捉迷藏应助tengli采纳,获得10
5秒前
shirleeyeahe发布了新的文献求助10
5秒前
kunny完成签到,获得积分10
5秒前
5秒前
闻声完成签到,获得积分10
5秒前
zqfxc发布了新的文献求助10
7秒前
zhuxl完成签到,获得积分10
8秒前
威康宇宙完成签到,获得积分10
8秒前
8秒前
9秒前
cchen0902发布了新的文献求助10
9秒前
在水一方应助cmh采纳,获得10
9秒前
一年能吃800篇sci吗完成签到,获得积分10
9秒前
慕青应助ww采纳,获得10
9秒前
9秒前
9秒前
rosexu完成签到,获得积分10
10秒前
jhlz5879完成签到,获得积分10
10秒前
百宝发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794