Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging

压缩传感 奇异值分解 算法 计算机科学 基质(化学分析) 奇异值 反问题 稀疏矩阵 人工智能 模式识别(心理学) 数学 特征向量 物理 数学分析 材料科学 量子力学 复合材料 高斯分布
作者
Bokun Tian,Xiaoling Zhang,Liang Li,Ling Pu,Liming Pu,Jun Shi,Shunjun Wei
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (9): 1751-1751 被引量:11
标识
DOI:10.3390/rs13091751
摘要

Because of the three-dimensional (3D) imaging scene’s sparsity, compressed sensing (CS) algorithms can be used for linear array synthetic aperture radar (LASAR) 3D sparse imaging. CS algorithms usually achieve high-quality sparse imaging at the expense of computational efficiency. To solve this problem, a fast Bayesian compressed sensing algorithm via relevance vector machine (FBCS–RVM) is proposed in this paper. The proposed method calculates the maximum marginal likelihood function under the framework of the RVM to obtain the optimal hyper-parameters; the scattering units corresponding to the non-zero optimal hyper-parameters are extracted as the target-areas in the imaging scene. Then, based on the target-areas, we simplify the measurement matrix and conduct sparse imaging. In addition, under low signal to noise ratio (SNR), low sampling rate, or high sparsity, the target-areas cannot always be extracted accurately, which probably contain several elements whose scattering coefficients are too small and closer to 0 compared to other elements. Those elements probably make the diagonal matrix singular and irreversible; the scattering coefficients cannot be estimated correctly. To solve this problem, the inverse matrix of the singular matrix is replaced with the generalized inverse matrix obtained by the truncated singular value decomposition (TSVD) algorithm to estimate the scattering coefficients correctly. Based on the rank of the singular matrix, those elements with small scattering coefficients are extracted and eliminated to obtain more accurate target-areas. Both simulation and experimental results show that the proposed method can improve the computational efficiency and imaging quality of LASAR 3D imaging compared with the state-of-the-art CS-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan发布了新的文献求助10
1秒前
嘿嘿嘿完成签到,获得积分10
1秒前
博ge发布了新的文献求助80
3秒前
量子星尘发布了新的文献求助10
4秒前
嘿嘿嘿发布了新的文献求助10
4秒前
6秒前
6秒前
不想学习发布了新的文献求助10
6秒前
乐乐应助箱子采纳,获得10
6秒前
6秒前
7秒前
7秒前
9秒前
9秒前
顾翩翩发布了新的文献求助10
10秒前
10秒前
Alan发布了新的文献求助10
10秒前
11秒前
adrenline发布了新的文献求助10
11秒前
CKX发布了新的文献求助10
12秒前
12秒前
浮生若梦完成签到,获得积分10
12秒前
成懂事长发布了新的文献求助10
12秒前
13秒前
木子完成签到 ,获得积分10
13秒前
科研通AI2S应助不想学习采纳,获得10
14秒前
沉默南露发布了新的文献求助10
15秒前
Hello应助123采纳,获得10
16秒前
Alan完成签到,获得积分10
16秒前
可爱丸子发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
浮生若梦发布了新的文献求助10
18秒前
顾矜应助沉默南露采纳,获得10
19秒前
yxy完成签到,获得积分20
19秒前
andrele发布了新的文献求助30
19秒前
ChiangYu完成签到,获得积分10
20秒前
xuan完成签到,获得积分10
20秒前
皮卡丘完成签到 ,获得积分0
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792