A biosensing method for the direct serological detection of liver diseases by integrating a SERS-based sensor and a CNN classifier

肝癌 血清学 肝细胞癌 卷积神经网络 计算机科学 人工智能 癌症研究 医学 抗体 免疫学
作者
Ningtao Cheng,Dajing Chen,Bin Liu,Jing Fu,Hongyang Wang
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:186: 113246-113246 被引量:39
标识
DOI:10.1016/j.bios.2021.113246
摘要

Direct serological detection, due to its clinical facility and testing economy, affords prominent clinical values to the early detection of cancer. Surface-enhanced Raman spectroscopy (SERS)-based sensors have shown great promise in realizing this form of detection. Detecting liver cancer early with such a form, especially in terms of monitoring the pathogenic progression from hepatic inflammations to cancer, is the most effective clinical path to reducing the mortality rate. However, the methodology investigation for this purpose remains a formidable challenge. We fabricated a SERS-based sensor, consisting of Au-Ag nanocomplex-decorated ZnO nanopillars on paper. The sensor has an analytic enhancement factor of 1.02 × 107, which is enough to sense the biomolecular information of liver diseases through direct serum SERS analysis. A convolutional neural network (CNN) classifier for recognizing serum SERS spectra was constructed by deep learning. Integrating this sensor with the CNN, we established an intelligent biosensing method and realized direct serological detection of liver diseases within 1 min. As a proof-of-concept, the method achieved a prediction accuracy of 97.78% on an independent test dataset randomly sampled from 30 normal controls, 30 hepatocellular carcinoma (HCC) cases, and 30 hepatitis B (HB) patients. The results suggest this method can be developed for detecting liver diseases clinically and is worthy of exploration as a means of liver cancer surveillance. The presented sensor holds potential for clinical translation to the direct serological detection of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiqi发布了新的文献求助10
1秒前
刘荣圣完成签到,获得积分10
1秒前
赘婿应助旺仔采纳,获得10
1秒前
三重积分咖啡完成签到 ,获得积分10
2秒前
单薄鲂关注了科研通微信公众号
5秒前
yule完成签到 ,获得积分10
6秒前
东十八发布了新的文献求助10
6秒前
英姑应助121314wld采纳,获得10
7秒前
完美世界应助淡然的钢笔采纳,获得10
9秒前
yyy发布了新的文献求助10
11秒前
文艺的小伙完成签到,获得积分10
13秒前
15秒前
wang完成签到,获得积分20
15秒前
CipherSage应助byyyy采纳,获得20
16秒前
17秒前
破特头完成签到,获得积分10
17秒前
fifteen应助入暖采纳,获得10
17秒前
Sg发布了新的文献求助30
18秒前
斯文败类应助QXS采纳,获得10
19秒前
zjz完成签到,获得积分10
21秒前
嚯嚯嚯嚯发布了新的文献求助10
21秒前
深情安青应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
汪望旺应助科研通管家采纳,获得30
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
23秒前
大个应助科研通管家采纳,获得10
23秒前
小二郎应助宋小姐冲鸭采纳,获得10
23秒前
23秒前
rara完成签到,获得积分10
24秒前
在水一方应助focco采纳,获得10
25秒前
26秒前
jevon应助huanir99采纳,获得10
26秒前
云上人发布了新的文献求助10
26秒前
jevon应助yyy采纳,获得10
26秒前
深情安青应助yyy采纳,获得10
26秒前
26秒前
科研通AI2S应助Blanka采纳,获得20
26秒前
文子完成签到 ,获得积分10
27秒前
烟花应助安戈采纳,获得10
27秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207318
求助须知:如何正确求助?哪些是违规求助? 2856706
关于积分的说明 8106534
捐赠科研通 2521854
什么是DOI,文献DOI怎么找? 1355242
科研通“疑难数据库(出版商)”最低求助积分说明 642199
邀请新用户注册赠送积分活动 613478