Dynamic Origin-Destination Flow Prediction Using Spatial-Temporal Graph Convolution Network With Mobile Phone Data

邻接矩阵 计算机科学 顶点(图论) 图形 移动电话 邻接表 流量网络 欧几里德距离 GSM演进的增强数据速率 算法 理论计算机科学 数学 人工智能 数学优化 电信
作者
Zhichen Liu,Zhiyuan Liu,Xiao Fu
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 147-161 被引量:14
标识
DOI:10.1109/mits.2021.3082397
摘要

Massive mobile phone data provide continuous and large-scale dynamic origin–destination (OD) flow information for multiple modes of transportation. In this study, we represent the dynamic OD flows obtained from mobile phone data as time-dependent graphs and propose two novel spatial-temporal graph convolutional network (STGCN)-based models to predict dynamic OD flows. Both models directly operate on the graph-structured OD flows, capture correlations among OD flows far apart in the Euclidean space, and fully explore the complex spatial-temporal features. We first formulate OD flows as explicit edges that specify the travels between two locations and propose an edge-focused STGCN. The edge-focused STGCN applies a novel three-step strategy to effectively update edge features in large-scale graphs. Second, we formulate OD flows as vertices in graph and propose a vertex-focused STGCN. The vertex-focused STGCN infers the relations among OD flows by establishing an adjacency matrix based on the temporal similarity between OD flows. The proposed models were validated using real-world mobile phone data collected in Kunshan, China. OD flows in the next hour were predicted, and the mean absolute percent errors of the edge-focused STGCN and the vertex-focused STGCN were 1.755% and 1.672%, respectively; both were significantly lower than the current baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Rookie发布了新的文献求助10
1秒前
2秒前
非要起名完成签到 ,获得积分10
3秒前
yi2362发布了新的文献求助10
4秒前
12123浪发布了新的文献求助10
4秒前
哈哈给哈发布了新的文献求助10
5秒前
guaishou发布了新的文献求助10
5秒前
6秒前
就吧发布了新的文献求助10
6秒前
lyz发布了新的文献求助10
11秒前
zlw121完成签到 ,获得积分10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
xzy998应助努力采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
Tourist应助科研通管家采纳,获得10
12秒前
changping应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
13秒前
Tourist应助科研通管家采纳,获得30
13秒前
大个应助科研通管家采纳,获得10
13秒前
13秒前
TAT完成签到 ,获得积分10
13秒前
wwz应助科研通管家采纳,获得10
13秒前
火星上惜天完成签到 ,获得积分10
14秒前
14秒前
yekindar完成签到,获得积分10
18秒前
Aurora完成签到 ,获得积分10
19秒前
丘比特应助风中诗蕊采纳,获得10
19秒前
20秒前
20秒前
小曹完成签到,获得积分10
20秒前
orixero应助秋子david采纳,获得10
23秒前
ly关注了科研通微信公众号
23秒前
24秒前
小杭76应助能干靖儿采纳,获得10
24秒前
ChenWen完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298580
求助须知:如何正确求助?哪些是违规求助? 4447072
关于积分的说明 13841540
捐赠科研通 4332544
什么是DOI,文献DOI怎么找? 2378222
邀请新用户注册赠送积分活动 1373488
关于科研通互助平台的介绍 1339077