Dynamic Origin-Destination Flow Prediction Using Spatial-Temporal Graph Convolution Network With Mobile Phone Data

邻接矩阵 计算机科学 顶点(图论) 图形 移动电话 邻接表 流量网络 欧几里德距离 GSM演进的增强数据速率 算法 理论计算机科学 数学 人工智能 数学优化 电信
作者
Zhichen Liu,Zhiyuan Liu,Xiao Fu
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 147-161 被引量:14
标识
DOI:10.1109/mits.2021.3082397
摘要

Massive mobile phone data provide continuous and large-scale dynamic origin–destination (OD) flow information for multiple modes of transportation. In this study, we represent the dynamic OD flows obtained from mobile phone data as time-dependent graphs and propose two novel spatial-temporal graph convolutional network (STGCN)-based models to predict dynamic OD flows. Both models directly operate on the graph-structured OD flows, capture correlations among OD flows far apart in the Euclidean space, and fully explore the complex spatial-temporal features. We first formulate OD flows as explicit edges that specify the travels between two locations and propose an edge-focused STGCN. The edge-focused STGCN applies a novel three-step strategy to effectively update edge features in large-scale graphs. Second, we formulate OD flows as vertices in graph and propose a vertex-focused STGCN. The vertex-focused STGCN infers the relations among OD flows by establishing an adjacency matrix based on the temporal similarity between OD flows. The proposed models were validated using real-world mobile phone data collected in Kunshan, China. OD flows in the next hour were predicted, and the mean absolute percent errors of the edge-focused STGCN and the vertex-focused STGCN were 1.755% and 1.672%, respectively; both were significantly lower than the current baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大知闲闲发布了新的文献求助10
刚刚
sxf发布了新的文献求助10
1秒前
持满发布了新的文献求助10
1秒前
1秒前
大锤哥发布了新的文献求助10
3秒前
简单的妙之完成签到,获得积分10
3秒前
bellla完成签到 ,获得积分20
3秒前
3秒前
喵了个咪发布了新的文献求助10
3秒前
大模型应助1157588380采纳,获得10
3秒前
ding应助奋斗静蕾采纳,获得10
4秒前
strong.quite完成签到,获得积分10
5秒前
迪迦完成签到,获得积分10
6秒前
vendimia发布了新的文献求助10
6秒前
科研通AI5应助Capital采纳,获得10
8秒前
Cyrus发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
pcr163应助Lico采纳,获得200
11秒前
loren应助彩色的中蓝采纳,获得10
11秒前
12秒前
我不理解关注了科研通微信公众号
13秒前
酷波er应助难过冰淇淋采纳,获得10
13秒前
13秒前
左园园完成签到,获得积分10
15秒前
16秒前
儒雅的善愁完成签到,获得积分10
16秒前
一个小胖子完成签到,获得积分10
16秒前
goldNAN发布了新的文献求助10
16秒前
乐乐应助快乐映秋采纳,获得10
17秒前
18秒前
陈秋红完成签到,获得积分10
18秒前
PINk发布了新的文献求助10
19秒前
19秒前
章赛发布了新的文献求助10
20秒前
21秒前
左园园发布了新的文献求助10
22秒前
搜集达人应助DS采纳,获得10
22秒前
22秒前
22秒前
卢明月完成签到,获得积分10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144025
求助须知:如何正确求助?哪些是违规求助? 4341830
关于积分的说明 13521491
捐赠科研通 4182277
什么是DOI,文献DOI怎么找? 2293363
邀请新用户注册赠送积分活动 1293893
关于科研通互助平台的介绍 1236661