Dynamic Origin-Destination Flow Prediction Using Spatial-Temporal Graph Convolution Network With Mobile Phone Data

邻接矩阵 计算机科学 顶点(图论) 图形 移动电话 邻接表 流量网络 欧几里德距离 GSM演进的增强数据速率 算法 理论计算机科学 数学 人工智能 数学优化 电信
作者
Zhichen Liu,Zhiyuan Liu,Xiao Fu
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 147-161 被引量:14
标识
DOI:10.1109/mits.2021.3082397
摘要

Massive mobile phone data provide continuous and large-scale dynamic origin–destination (OD) flow information for multiple modes of transportation. In this study, we represent the dynamic OD flows obtained from mobile phone data as time-dependent graphs and propose two novel spatial-temporal graph convolutional network (STGCN)-based models to predict dynamic OD flows. Both models directly operate on the graph-structured OD flows, capture correlations among OD flows far apart in the Euclidean space, and fully explore the complex spatial-temporal features. We first formulate OD flows as explicit edges that specify the travels between two locations and propose an edge-focused STGCN. The edge-focused STGCN applies a novel three-step strategy to effectively update edge features in large-scale graphs. Second, we formulate OD flows as vertices in graph and propose a vertex-focused STGCN. The vertex-focused STGCN infers the relations among OD flows by establishing an adjacency matrix based on the temporal similarity between OD flows. The proposed models were validated using real-world mobile phone data collected in Kunshan, China. OD flows in the next hour were predicted, and the mean absolute percent errors of the edge-focused STGCN and the vertex-focused STGCN were 1.755% and 1.672%, respectively; both were significantly lower than the current baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助lio采纳,获得10
1秒前
旺王雪饼发布了新的文献求助10
1秒前
2秒前
我我发布了新的文献求助30
2秒前
自然映梦完成签到,获得积分20
2秒前
拔丝香芋发布了新的文献求助10
2秒前
周二w完成签到,获得积分10
3秒前
九儿发布了新的文献求助10
5秒前
5秒前
星辰大海应助zgdzhj采纳,获得10
5秒前
5秒前
郑存炜完成签到,获得积分10
5秒前
5秒前
汉堡包应助yx_cheng采纳,获得10
5秒前
6秒前
斯文一笑完成签到 ,获得积分10
10秒前
yznfly应助可靠从云采纳,获得30
10秒前
10秒前
郑存炜发布了新的文献求助10
10秒前
10秒前
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
可爱的函函应助李慧颖采纳,获得10
11秒前
有益完成签到,获得积分10
12秒前
旺王雪饼关注了科研通微信公众号
13秒前
13秒前
激情的纲发布了新的文献求助10
13秒前
kafei完成签到,获得积分10
13秒前
SCI小能手发布了新的文献求助10
14秒前
卡卡西应助Rosaline采纳,获得30
14秒前
glaze完成签到 ,获得积分10
15秒前
majiko发布了新的文献求助10
15秒前
首席医官完成签到,获得积分10
16秒前
16秒前
云云关注了科研通微信公众号
16秒前
研友_VZG7GZ应助浅夏采纳,获得10
16秒前
17秒前
17秒前
我是老大应助JUDY采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952732
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11090865
捐赠科研通 3228782
什么是DOI,文献DOI怎么找? 1785114
邀请新用户注册赠送积分活动 869105
科研通“疑难数据库(出版商)”最低求助积分说明 801350