Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

计算机科学 自举(财务) 同态加密 人工神经网络 加密 算法 明文 深度学习 人工智能 MNIST数据库 离群值 机器学习 数学 操作系统 计量经济学
作者
Joon-Woo Lee,HyungChul Kang,Yongwoo Lee,Woosuk Choi,Jieun Eom,Maxim Deryabin,Eunsang Lee,Jung-Hyun Lee,Donghoon Yoo,Young Sik Kim,Jong‐Seon No
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 30039-30054 被引量:174
标识
DOI:10.1109/access.2022.3159694
摘要

Fully homomorphic encryption (FHE) is a prospective tool for privacy-preserving machine learning (PPML). Several PPML models have been proposed based on various FHE schemes and approaches. Although FHE schemes are suitable as tools for implementing PPML models, previous PPML models based on FHE, such as CryptoNet, SEALion, and CryptoDL, are limited to simple and nonstandard types of machine learning models; they have not proven to be efficient and accurate with more practical and advanced datasets. Previous PPML schemes replaced non-arithmetic activation functions with simple arithmetic functions instead of adopting approximation methods and did not use bootstrapping, which enables continuous homomorphic evaluations. Thus, they could neither use standard activation functions nor employ large numbers of layers. In this work, we first implement the standard ResNet-20 model with the RNS-CKKS FHE with bootstrapping and verify the implemented model with the CIFAR-10 dataset and plaintext model parameters. Instead of replacing the non-arithmetic functions with simple arithmetic functions, we use state-of-the-art approximation methods to evaluate these non-arithmetic functions, such as ReLU and Softmax, with sufficient precision. Further, for the first time, we use the bootstrapping technique of the RNS-CKKS scheme in the proposed model, which enables us to evaluate an arbitrary deep learning model on encrypted data. We numerically verify that the proposed model with the CIFAR-10 dataset shows 98.43% identical results to the original ResNet-20 model with non-encrypted data. The classification accuracy of the proposed model is 92.43%±2.65%, which is quite close to that of the original ResNet-20 CNN model (91.89%). It takes approximately 3 h for inference on a dual Intel Xeon Platinum 8280 CPU (112 cores) with 172 GB of memory. We believe that this opens the possibility of applying FHE to an advanced deep PPML model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jay关闭了Jay文献求助
1秒前
2秒前
5秒前
5秒前
7秒前
yiluxiangbei发布了新的文献求助10
7秒前
10秒前
10秒前
10秒前
11秒前
zhao完成签到,获得积分10
12秒前
材料若饥完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
sxklp发布了新的文献求助10
14秒前
14秒前
zxt发布了新的文献求助10
16秒前
yiluxiangbei完成签到,获得积分10
17秒前
JamesPei应助Leeny采纳,获得10
17秒前
18秒前
nunu完成签到 ,获得积分20
19秒前
zhang完成签到,获得积分10
19秒前
Ava应助吾问无为谓采纳,获得10
19秒前
17381362015发布了新的文献求助10
20秒前
武雨寒发布了新的文献求助10
20秒前
20秒前
加油哟完成签到,获得积分10
20秒前
ZzzZzH完成签到,获得积分20
21秒前
咿犽完成签到,获得积分10
21秒前
here完成签到 ,获得积分10
23秒前
23秒前
24秒前
26秒前
隐形曼青应助加油哟采纳,获得10
26秒前
27秒前
tiantiantian发布了新的文献求助10
28秒前
仁者发布了新的文献求助30
30秒前
彩色映雁发布了新的文献求助40
31秒前
Leeny发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966955
求助须知:如何正确求助?哪些是违规求助? 3512400
关于积分的说明 11163031
捐赠科研通 3247238
什么是DOI,文献DOI怎么找? 1793759
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432