Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

计算机科学 自举(财务) 同态加密 人工神经网络 加密 算法 明文 深度学习 人工智能 MNIST数据库 离群值 机器学习 数学 操作系统 计量经济学
作者
Joon-Woo Lee,HyungChul Kang,Yongwoo Lee,Woosuk Choi,Jieun Eom,Maxim Deryabin,Eunsang Lee,Jung-Hyun Lee,Donghoon Yoo,Young Sik Kim,Jong‐Seon No
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 30039-30054 被引量:174
标识
DOI:10.1109/access.2022.3159694
摘要

Fully homomorphic encryption (FHE) is a prospective tool for privacy-preserving machine learning (PPML). Several PPML models have been proposed based on various FHE schemes and approaches. Although FHE schemes are suitable as tools for implementing PPML models, previous PPML models based on FHE, such as CryptoNet, SEALion, and CryptoDL, are limited to simple and nonstandard types of machine learning models; they have not proven to be efficient and accurate with more practical and advanced datasets. Previous PPML schemes replaced non-arithmetic activation functions with simple arithmetic functions instead of adopting approximation methods and did not use bootstrapping, which enables continuous homomorphic evaluations. Thus, they could neither use standard activation functions nor employ large numbers of layers. In this work, we first implement the standard ResNet-20 model with the RNS-CKKS FHE with bootstrapping and verify the implemented model with the CIFAR-10 dataset and plaintext model parameters. Instead of replacing the non-arithmetic functions with simple arithmetic functions, we use state-of-the-art approximation methods to evaluate these non-arithmetic functions, such as ReLU and Softmax, with sufficient precision. Further, for the first time, we use the bootstrapping technique of the RNS-CKKS scheme in the proposed model, which enables us to evaluate an arbitrary deep learning model on encrypted data. We numerically verify that the proposed model with the CIFAR-10 dataset shows 98.43% identical results to the original ResNet-20 model with non-encrypted data. The classification accuracy of the proposed model is 92.43%±2.65%, which is quite close to that of the original ResNet-20 CNN model (91.89%). It takes approximately 3 h for inference on a dual Intel Xeon Platinum 8280 CPU (112 cores) with 172 GB of memory. We believe that this opens the possibility of applying FHE to an advanced deep PPML model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
666发布了新的文献求助10
2秒前
简简简发布了新的文献求助10
3秒前
3秒前
4秒前
黄景阳完成签到 ,获得积分10
4秒前
生椰拿铁完成签到,获得积分10
5秒前
ssj完成签到,获得积分10
5秒前
白云四季发布了新的文献求助10
6秒前
归尘发布了新的文献求助10
6秒前
6秒前
稳重听双发布了新的文献求助10
6秒前
xia完成签到 ,获得积分10
7秒前
7秒前
Akim应助迷人的帅哥采纳,获得10
8秒前
9秒前
木又应助刘隽轩采纳,获得10
9秒前
量子星尘发布了新的文献求助30
10秒前
简简简完成签到,获得积分10
11秒前
12秒前
action完成签到 ,获得积分10
12秒前
12秒前
学不懂数学完成签到,获得积分10
13秒前
15秒前
Loki完成签到,获得积分10
15秒前
Tokgo完成签到,获得积分10
15秒前
15秒前
15秒前
慧慧发布了新的文献求助10
17秒前
17秒前
稳重听双完成签到,获得积分10
17秒前
17秒前
海中有月完成签到 ,获得积分10
18秒前
bkagyin应助白云四季采纳,获得10
18秒前
CipherSage应助dd36采纳,获得10
18秒前
20秒前
21秒前
彭于晏应助AAA工位主理人采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483