Deep learning image reconstruction algorithm for pancreatic protocol dual-energy computed tomography: image quality and quantification of iodine concentration

医学 介入放射学 图像质量 迭代重建 超声波 胰腺癌 核医学 算法 神经组阅片室 放射科 癌症 人工智能 神经学 图像(数学) 内科学 数学 精神科 计算机科学
作者
Yoshifumi Noda,Nobuyuki Kawai,Shoma Nagata,Fumihiko Nakamura,Takayuki Mori,Toshiharu Miyoshi,Ryosuke Suzuki,Fumiya Kitahara,Hiroki Kato,Fuminori Hyodo,Masayuki Matsuo
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (1): 384-394 被引量:32
标识
DOI:10.1007/s00330-021-08121-3
摘要

To evaluate the image quality and iodine concentration (IC) measurements in pancreatic protocol dual-energy computed tomography (DECT) reconstructed using deep learning image reconstruction (DLIR) and compare them with those of images reconstructed using hybrid iterative reconstruction (IR). The local institutional review board approved this prospective study. Written informed consent was obtained from all participants. Thirty consecutive participants with pancreatic cancer (PC) underwent pancreatic protocol DECT for initial evaluation. DECT data were reconstructed at 70 keV using 40% adaptive statistical iterative reconstruction–Veo (hybrid-IR) and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The diagnostic acceptability and conspicuity of PC were qualitatively assessed using a 5-point scale. IC values of the abdominal aorta, pancreas, PC, liver, and portal vein; standard deviation (SD); and coefficient of variation (CV) were calculated. Qualitative and quantitative parameters were compared between the hybrid-IR, DLIR-M, and DLIR-H groups. The diagnostic acceptability and conspicuity of PC were significantly better in the DLIR-M group compared with those in the other groups (p < .001–.001). The IC values of the anatomical structures were almost comparable between the three groups (p = .001–.9). The SD of IC values was significantly lower in the DLIR-H group (p < .001) and resulted in the lowest CV (p < .001–.002) compared with those in the hybrid-IR and DLIR-M groups. DLIR could significantly improve image quality and reduce the variability of IC values than could hybrid-IR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助重要的奇异果采纳,获得10
刚刚
Akim应助豆包采纳,获得10
1秒前
SciGPT应助虚心的爆米花采纳,获得10
1秒前
OO圈圈发布了新的文献求助10
1秒前
纯真毛豆发布了新的文献求助10
2秒前
2秒前
2秒前
震动的梦山完成签到,获得积分10
3秒前
wyj完成签到,获得积分10
4秒前
4秒前
为神武完成签到,获得积分10
5秒前
雁夜完成签到,获得积分10
5秒前
angelo发布了新的文献求助10
5秒前
Lucas应助积极的邪欢采纳,获得10
6秒前
R_发布了新的文献求助20
6秒前
wsh完成签到,获得积分20
7秒前
hxpxp完成签到,获得积分10
8秒前
纯情的碧玉完成签到,获得积分10
8秒前
六六安安完成签到,获得积分10
8秒前
nicelily发布了新的文献求助10
8秒前
求求了接收吧完成签到,获得积分20
9秒前
Hello应助童绾绾采纳,获得10
9秒前
妍妍发布了新的文献求助10
9秒前
沙尘飞扬完成签到,获得积分10
9秒前
yy完成签到,获得积分10
10秒前
qiaoxixi发布了新的文献求助10
10秒前
10秒前
万能图书馆应助干净翠桃采纳,获得10
11秒前
11秒前
792631803发布了新的文献求助30
11秒前
down完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
妍妍完成签到,获得积分10
15秒前
杨佳睿完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
纯真毛豆完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154