An effective damage identification procedure using model updating technique and multi-objective optimization algorithm for structures made of functionally graded materials

鉴定(生物学) 算法 遗传算法 多目标优化 数学优化 分类 计算机科学 最优化问题 帕累托原理
作者
Du Dinh-Cong,Trung Nguyen-Thoi
出处
期刊:Engineering With Computers [Springer Science+Business Media]
被引量:1
标识
DOI:10.1007/s00366-021-01511-7
摘要

The application of multi-objective optimization algorithms in the field of structural damage identification has gained increasing attention in the past few years. Nevertheless, their application to the damage detection problems of composite structures is still very limited. In this regard, the article presents the first attempt to implement a multi-objective optimization framework based on multi-objective cuckoo search (MOCS) algorithm for identifying the locations and extent of multi-damages in structures made of functionally graded materials. First, we cast the structural damage identification procedure into an optimization-based FE model updating problem, where two sub-objective functions, namely, flexibility matrix change (Flex) and modal assurance criterion (MAC), are established for the multi-objective optimization purpose. Then, the MOCS as an effective optimizer is adopted to solve the multi-objective optimization, which results in a set of Pareto-optimal solutions for damage identification. Subsequently, a decision-making process is made for finding the most preferred solution in the Pareto-optimal set. Finally, numerical simulation studies on a two-span continuous FGM beam and a cantilever FGM plate are conducted to investigate the feasibility and accuracy of the proposed damage identification procedure. According to the obtained identification results, the proposed procedure can yield good predictions for the damage locations and corresponding severities in both single and multi-damage cases of the FGM structures using spatially incomplete measurement data with noise contamination. In addition, the results also show that the MOCS algorithm provides a better damage prediction than two other well-known algorithms, including Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Grey Wolf Optimizer (MGWO).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LCM666发布了新的文献求助10
1秒前
小小阿杰完成签到,获得积分10
1秒前
张两丰完成签到,获得积分10
1秒前
霹雳小土豆-完成签到,获得积分10
3秒前
4秒前
张雯雯发布了新的文献求助10
4秒前
5秒前
YGTRECE完成签到,获得积分20
6秒前
上官若男应助1111采纳,获得10
6秒前
6秒前
8秒前
小马甲应助黄嘟嘟采纳,获得10
9秒前
10秒前
13秒前
shidewu完成签到,获得积分10
13秒前
雨雪多下完成签到,获得积分20
14秒前
千幻完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
19秒前
咕噜咕噜发布了新的文献求助10
19秒前
20秒前
20秒前
隐形曼青应助林子青采纳,获得10
20秒前
Sccj完成签到,获得积分10
23秒前
科研助手6发布了新的文献求助10
24秒前
prince8891发布了新的文献求助10
24秒前
1111发布了新的文献求助10
24秒前
森森完成签到,获得积分10
25秒前
25秒前
ye完成签到,获得积分10
25秒前
咕噜咕噜完成签到,获得积分10
25秒前
云溪完成签到,获得积分10
25秒前
djiwisksk66应助汤绮菱采纳,获得10
26秒前
ZH完成签到 ,获得积分10
28秒前
西出阳关完成签到,获得积分10
28秒前
28秒前
伍小胖完成签到 ,获得积分10
29秒前
1111完成签到,获得积分20
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993