An effective damage identification procedure using model updating technique and multi-objective optimization algorithm for structures made of functionally graded materials

鉴定(生物学) 算法 遗传算法 多目标优化 数学优化 分类 计算机科学 最优化问题 帕累托原理
作者
Du Dinh-Cong,Trung Nguyen-Thoi
出处
期刊:Engineering With Computers [Springer Nature]
被引量:1
标识
DOI:10.1007/s00366-021-01511-7
摘要

The application of multi-objective optimization algorithms in the field of structural damage identification has gained increasing attention in the past few years. Nevertheless, their application to the damage detection problems of composite structures is still very limited. In this regard, the article presents the first attempt to implement a multi-objective optimization framework based on multi-objective cuckoo search (MOCS) algorithm for identifying the locations and extent of multi-damages in structures made of functionally graded materials. First, we cast the structural damage identification procedure into an optimization-based FE model updating problem, where two sub-objective functions, namely, flexibility matrix change (Flex) and modal assurance criterion (MAC), are established for the multi-objective optimization purpose. Then, the MOCS as an effective optimizer is adopted to solve the multi-objective optimization, which results in a set of Pareto-optimal solutions for damage identification. Subsequently, a decision-making process is made for finding the most preferred solution in the Pareto-optimal set. Finally, numerical simulation studies on a two-span continuous FGM beam and a cantilever FGM plate are conducted to investigate the feasibility and accuracy of the proposed damage identification procedure. According to the obtained identification results, the proposed procedure can yield good predictions for the damage locations and corresponding severities in both single and multi-damage cases of the FGM structures using spatially incomplete measurement data with noise contamination. In addition, the results also show that the MOCS algorithm provides a better damage prediction than two other well-known algorithms, including Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Grey Wolf Optimizer (MGWO).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助Wqian采纳,获得10
2秒前
星河梦枕完成签到,获得积分10
4秒前
qiu发布了新的文献求助10
6秒前
研友_ngKabn发布了新的文献求助10
7秒前
7秒前
liaodongjun发布了新的文献求助10
9秒前
9秒前
12秒前
耶比环肽发布了新的文献求助10
14秒前
Wqian发布了新的文献求助10
14秒前
受伤破茧完成签到,获得积分10
17秒前
书蔬鱼猪发布了新的文献求助10
18秒前
科研通AI6应助罗佳明采纳,获得10
19秒前
耶比环肽完成签到,获得积分10
20秒前
大个应助sssshhh采纳,获得10
21秒前
25秒前
大方冬寒发布了新的文献求助10
28秒前
hug完成签到,获得积分0
31秒前
阿尉完成签到 ,获得积分10
34秒前
小蘑菇应助linlin采纳,获得10
34秒前
向阳花完成签到 ,获得积分10
36秒前
TiY完成签到 ,获得积分10
38秒前
39秒前
思源应助闪闪航空采纳,获得10
41秒前
NEW完成签到,获得积分10
41秒前
42秒前
清脆乐曲发布了新的文献求助10
43秒前
夜草完成签到,获得积分10
43秒前
sssshhh发布了新的文献求助10
45秒前
46秒前
orixero应助谨慎的擎宇采纳,获得10
46秒前
47秒前
47秒前
上官若男应助Wqian采纳,获得10
47秒前
闪闪航空发布了新的文献求助10
52秒前
linlin发布了新的文献求助10
53秒前
HB发布了新的文献求助10
53秒前
清脆乐曲完成签到,获得积分10
54秒前
felix发布了新的文献求助10
55秒前
科研通AI6应助sssshhh采纳,获得10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614