An effective damage identification procedure using model updating technique and multi-objective optimization algorithm for structures made of functionally graded materials

鉴定(生物学) 算法 遗传算法 多目标优化 数学优化 分类 计算机科学 最优化问题 帕累托原理
作者
Du Dinh-Cong,Trung Nguyen-Thoi
出处
期刊:Engineering With Computers [Springer Nature]
被引量:1
标识
DOI:10.1007/s00366-021-01511-7
摘要

The application of multi-objective optimization algorithms in the field of structural damage identification has gained increasing attention in the past few years. Nevertheless, their application to the damage detection problems of composite structures is still very limited. In this regard, the article presents the first attempt to implement a multi-objective optimization framework based on multi-objective cuckoo search (MOCS) algorithm for identifying the locations and extent of multi-damages in structures made of functionally graded materials. First, we cast the structural damage identification procedure into an optimization-based FE model updating problem, where two sub-objective functions, namely, flexibility matrix change (Flex) and modal assurance criterion (MAC), are established for the multi-objective optimization purpose. Then, the MOCS as an effective optimizer is adopted to solve the multi-objective optimization, which results in a set of Pareto-optimal solutions for damage identification. Subsequently, a decision-making process is made for finding the most preferred solution in the Pareto-optimal set. Finally, numerical simulation studies on a two-span continuous FGM beam and a cantilever FGM plate are conducted to investigate the feasibility and accuracy of the proposed damage identification procedure. According to the obtained identification results, the proposed procedure can yield good predictions for the damage locations and corresponding severities in both single and multi-damage cases of the FGM structures using spatially incomplete measurement data with noise contamination. In addition, the results also show that the MOCS algorithm provides a better damage prediction than two other well-known algorithms, including Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Grey Wolf Optimizer (MGWO).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘怀蕊完成签到,获得积分10
1秒前
1秒前
LLL发布了新的文献求助10
1秒前
跳跃乘风完成签到,获得积分10
2秒前
Anxinxin完成签到,获得积分10
2秒前
阳佟冬卉完成签到,获得积分10
3秒前
Silence发布了新的文献求助10
3秒前
3秒前
通通通发布了新的文献求助10
4秒前
帅气的秘密完成签到 ,获得积分10
4秒前
领导范儿应助马建国采纳,获得10
4秒前
lysixsixsix完成签到,获得积分10
4秒前
5秒前
jia完成签到,获得积分10
5秒前
欣喜乐天发布了新的文献求助10
5秒前
Kiyotaka完成签到,获得积分10
5秒前
6秒前
季夏发布了新的文献求助10
6秒前
Tingshan发布了新的文献求助20
7秒前
背后的诺言完成签到 ,获得积分20
7秒前
GHOST完成签到,获得积分20
8秒前
8秒前
勤奋的蜗牛完成签到,获得积分20
8秒前
omo发布了新的文献求助10
8秒前
Akim应助糊糊采纳,获得10
9秒前
Zn应助dsjlove采纳,获得10
9秒前
月球宇航员完成签到,获得积分10
9秒前
9秒前
英姑应助亲爱的安德烈采纳,获得10
11秒前
今后应助workwork采纳,获得10
11秒前
11秒前
落后翠柏发布了新的文献求助10
11秒前
淡然凝丹完成签到,获得积分10
11秒前
Y_Jfeng完成签到,获得积分10
12秒前
潼熙甄完成签到 ,获得积分10
13秒前
Lucas应助糖糖采纳,获得10
13秒前
wyblobin发布了新的文献求助10
13秒前
星辰大海应助叶飞荷采纳,获得10
13秒前
wanmiao12完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762