An effective damage identification procedure using model updating technique and multi-objective optimization algorithm for structures made of functionally graded materials

鉴定(生物学) 算法 遗传算法 多目标优化 数学优化 分类 计算机科学 最优化问题 帕累托原理
作者
Du Dinh-Cong,Trung Nguyen-Thoi
出处
期刊:Engineering With Computers [Springer Nature]
被引量:1
标识
DOI:10.1007/s00366-021-01511-7
摘要

The application of multi-objective optimization algorithms in the field of structural damage identification has gained increasing attention in the past few years. Nevertheless, their application to the damage detection problems of composite structures is still very limited. In this regard, the article presents the first attempt to implement a multi-objective optimization framework based on multi-objective cuckoo search (MOCS) algorithm for identifying the locations and extent of multi-damages in structures made of functionally graded materials. First, we cast the structural damage identification procedure into an optimization-based FE model updating problem, where two sub-objective functions, namely, flexibility matrix change (Flex) and modal assurance criterion (MAC), are established for the multi-objective optimization purpose. Then, the MOCS as an effective optimizer is adopted to solve the multi-objective optimization, which results in a set of Pareto-optimal solutions for damage identification. Subsequently, a decision-making process is made for finding the most preferred solution in the Pareto-optimal set. Finally, numerical simulation studies on a two-span continuous FGM beam and a cantilever FGM plate are conducted to investigate the feasibility and accuracy of the proposed damage identification procedure. According to the obtained identification results, the proposed procedure can yield good predictions for the damage locations and corresponding severities in both single and multi-damage cases of the FGM structures using spatially incomplete measurement data with noise contamination. In addition, the results also show that the MOCS algorithm provides a better damage prediction than two other well-known algorithms, including Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Grey Wolf Optimizer (MGWO).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Syzhou完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
pu发布了新的文献求助10
3秒前
英姑应助rgsrgrs采纳,获得10
4秒前
shlw完成签到,获得积分10
4秒前
lasak完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
含蓄文博完成签到 ,获得积分10
5秒前
积极幻然完成签到 ,获得积分10
6秒前
英姑应助泽山咸采纳,获得10
6秒前
萧水白完成签到,获得积分10
6秒前
aaaaa发布了新的文献求助10
7秒前
woyufengtian完成签到,获得积分10
7秒前
8秒前
rgsrgrs完成签到,获得积分10
8秒前
惊鸿一面完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助30
10秒前
Larluli完成签到,获得积分20
12秒前
12秒前
说话请投币完成签到,获得积分10
12秒前
iNk应助明杰采纳,获得10
13秒前
DS发布了新的文献求助10
13秒前
13秒前
Twonej应助datiancaihaha采纳,获得30
14秒前
CodeCraft应助nuo_11采纳,获得10
14秒前
恋如雪止应助于你无瓜采纳,获得10
15秒前
快乐的妙菱完成签到,获得积分10
15秒前
16秒前
领导范儿应助优美紫槐采纳,获得10
18秒前
大模型应助明杰采纳,获得10
18秒前
王大可发布了新的文献求助10
18秒前
发篇Sci不过分吧完成签到,获得积分10
19秒前
只只发布了新的文献求助10
20秒前
李健的小迷弟应助lyy采纳,获得10
20秒前
清爽的诗云完成签到,获得积分10
21秒前
我是老大应助支凤妖采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513