Optimization of injection-withdrawal schedules for underground gas storage in a multi-block depleted gas reservoir considering operation stability

石油工程 天然气 体积流量 环境科学 数学优化 计算机科学 工程类 数学 机械 废物管理 物理
作者
Jun Zhou,Jinghong Peng,Guangchuan Liang,Jianhua Sun
标识
DOI:10.1080/15567036.2021.1988005
摘要

Underground gas storage (UGS) is an important facility to overcome the imbalance between natural gas supply and demand. In this paper, an optimization model of injection-withdrawal scheduling for UGS in a depleted gas reservoir is established to find the optimal operating state of the gas storage facility. Faults are widely developed in reservoir, which can divide a full reservoir into several pressure disconnected reservoir blocks (RB). Considering that the unbalanced pressure distribution of reservoir will significantly affect the stable operation of UGS, the optimization model aims to minimize the deviation degree of pressure between RBs under the condition of satisfying the gas injection-withdrawal requirements. The decision variables are the number of operating wells and the flow rate of a single well of each RB. A series of equality and inequality constraints are developed, including maximum inventory of RB, maximum pressure of RB and maximum flow rate of a single well. To verify the validity of the proposed method, the optimization model is applied to an actual UGS in a depleted gas reservoir in China. The GAMS modeling system and DICOPT solver are adopted to solve the optimization problem. The results show that the deviation degree of pressure between RBs of the optimized scheme is about 75% lower than that of the empirical scheme. In the empirical scheme, there is an extremely high-pressure RB with a maximum pressure of 43.98 MPa, which exceeds the pressure limit of 5.38 MPa. However, all RBs meet the pressure requirement in the optimized scheme. Overall, the optimized scheme can effectively reduce the deviation degree of pressure between RBs and avoid the occurrence of extremely high-pressure RB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
YY再摆烂完成签到,获得积分10
6秒前
Justine发布了新的文献求助10
8秒前
8秒前
人生苦短完成签到,获得积分10
9秒前
当归完成签到,获得积分10
9秒前
limi发布了新的文献求助10
10秒前
12秒前
CodeCraft应助着急的黄豆采纳,获得10
12秒前
13秒前
FBQZDJG2122完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
18秒前
orixero应助海德堡采纳,获得10
18秒前
19秒前
123完成签到,获得积分10
20秒前
22秒前
25秒前
dmoney发布了新的文献求助10
27秒前
大个应助qqq采纳,获得10
27秒前
anna1992发布了新的文献求助10
28秒前
Ava应助讨厌乐跑采纳,获得10
28秒前
32秒前
dmoney完成签到,获得积分10
33秒前
ZMH完成签到,获得积分20
35秒前
37秒前
衣裳薄完成签到,获得积分10
37秒前
ZMH发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
40秒前
海德堡发布了新的文献求助10
42秒前
satori完成签到,获得积分10
42秒前
Starry完成签到,获得积分10
46秒前
47秒前
要开心吖发布了新的文献求助10
47秒前
小二郎应助shiwei采纳,获得10
47秒前
47秒前
47秒前
47秒前
48秒前
48秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424269
求助须知:如何正确求助?哪些是违规求助? 4538679
关于积分的说明 14163148
捐赠科研通 4455545
什么是DOI,文献DOI怎么找? 2443789
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304