Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI

卷积神经网络 人工智能 计算机科学 编码(内存) 单发 混叠 一般化 模式识别(心理学) 灵敏度(控制系统) 弹丸 相(物质) 计算机视觉 数学 物理 电子工程 工程类 数学分析 欠采样 光学 有机化学 化学 量子力学
作者
Hui Zhang,Chengyan Wang,Weibo Chen,Fanwen Wang,Zidong Yang,Shuai Xu,He Wang
出处
期刊:NeuroImage [Elsevier]
卷期号:244: 118632-118632 被引量:7
标识
DOI:10.1016/j.neuroimage.2021.118632
摘要

A phase correction method for high-resolution multi-shot (MSH) diffusion weighted imaging (DWI) is proposed. The efficacy and generalization capability of the method were validated on both healthy volunteers and patients.Conventionally, inter-shot phase variations for MSH echo-planar imaging (EPI) DWI are corrected by model-based algorithms. However, many acquisition imperfections are hard to measure accurately for conventional model-based methods, making the phase estimation and artifacts suppression unreliable. We propose a deep learning multiplexed sensitivity-encoding (DL-MUSE) framework to improve the phase estimations based on convolutional neural network (CNN) reconstruction. Aliasing-free single-shot (SSH) DW images, which have been used routinely in clinical settings, were used for training before the aliasing correction of MSH-DWI images. A dual-channel U-net comprising multiple convolutional layers was used for the phase estimation of MSH-EPI. The network was trained on a dataset containing 30 healthy volunteers and tested on another dataset of 52 healthy subjects and 15 patients with lesions or tumors with different shot numbers (4, 6 and 8). To further validate the generalization capability of our network, we acquired a dataset with different numbers of shots, TEs, partial Fourier factors, resolutions, ETLs, FOVs, coil numbers, and image orientations from two sites. We also compared the reconstruction performance of our proposed method with that of the conventional MUSE and SSH-EPI qualitatively and quantitatively.Our results show that DL-MUSE is capable of correcting inter-shot phase errors with high and robust performance. Compared to conventional model-based MUSE, our method, by applying deep learning-based phase corrections, showed reduced distortion, noise level, and signal loss in high b-value DWIs. The improvements of image quality become more evident as the shot number increases from 4 to 8, especially in those central regions of the images, where g-factor artifacts are severe. Furthermore, the proposed method could provide the information about the orientation of the white matter with better consistency and achieve finer fibers delineation compared to the SSH-EPI method. Besides, the experiments on volunteers and patients from two different sites demonstrated the generalizability of our proposed method preliminarily.A deep learning-based reconstruction algorithm for MSH-EPI images, which helps improve image quality greatly, was proposed. Results from healthy volunteers and tumor patients demonstrated the feasibility and generalization performances of our method for high-resolution MSH-EPI DWI, which can be used for routine clinical applications as well as neuroimaging research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注之双完成签到,获得积分10
1秒前
黑山羊完成签到,获得积分10
2秒前
飞儿完成签到,获得积分10
2秒前
闵SUGA发布了新的文献求助10
2秒前
无极微光应助过时的寄真采纳,获得20
3秒前
机灵冬灵完成签到 ,获得积分10
3秒前
顺利毕业发布了新的文献求助10
4秒前
香蕉冰真完成签到,获得积分10
5秒前
蓝冰完成签到,获得积分10
5秒前
lllll1243完成签到,获得积分10
6秒前
6秒前
用户5063899完成签到,获得积分10
6秒前
光亮的青文完成签到 ,获得积分10
7秒前
xrf完成签到,获得积分10
8秒前
oxygen253完成签到,获得积分10
8秒前
一棵树完成签到,获得积分10
8秒前
科研通AI6应助月星采纳,获得10
8秒前
WATQ应助ydby27采纳,获得10
10秒前
11秒前
13秒前
秋秋完成签到 ,获得积分10
14秒前
科研小白完成签到,获得积分10
14秒前
海人完成签到 ,获得积分10
16秒前
16秒前
LATP发布了新的文献求助10
17秒前
17秒前
18秒前
ikun0000完成签到,获得积分10
19秒前
王彤彤发布了新的文献求助10
19秒前
酒尚温完成签到 ,获得积分10
20秒前
song完成签到,获得积分10
20秒前
21秒前
刘佳宇完成签到,获得积分10
21秒前
67号发布了新的文献求助10
22秒前
ydby27完成签到,获得积分10
22秒前
西因应助上官从波采纳,获得10
22秒前
23秒前
长留完成签到 ,获得积分10
23秒前
轧贝葡胺完成签到,获得积分10
23秒前
成就的巨人完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685826
关于积分的说明 14839777
捐赠科研通 4674981
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471124