Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI

卷积神经网络 人工智能 计算机科学 编码(内存) 单发 混叠 一般化 模式识别(心理学) 灵敏度(控制系统) 弹丸 相(物质) 计算机视觉 数学 物理 电子工程 工程类 数学分析 欠采样 光学 有机化学 化学 量子力学
作者
Hui Zhang,Chengyan Wang,Weibo Chen,Fanwen Wang,Zidong Yang,Shuai Xu,He Wang
出处
期刊:NeuroImage [Elsevier BV]
卷期号:244: 118632-118632 被引量:7
标识
DOI:10.1016/j.neuroimage.2021.118632
摘要

A phase correction method for high-resolution multi-shot (MSH) diffusion weighted imaging (DWI) is proposed. The efficacy and generalization capability of the method were validated on both healthy volunteers and patients.Conventionally, inter-shot phase variations for MSH echo-planar imaging (EPI) DWI are corrected by model-based algorithms. However, many acquisition imperfections are hard to measure accurately for conventional model-based methods, making the phase estimation and artifacts suppression unreliable. We propose a deep learning multiplexed sensitivity-encoding (DL-MUSE) framework to improve the phase estimations based on convolutional neural network (CNN) reconstruction. Aliasing-free single-shot (SSH) DW images, which have been used routinely in clinical settings, were used for training before the aliasing correction of MSH-DWI images. A dual-channel U-net comprising multiple convolutional layers was used for the phase estimation of MSH-EPI. The network was trained on a dataset containing 30 healthy volunteers and tested on another dataset of 52 healthy subjects and 15 patients with lesions or tumors with different shot numbers (4, 6 and 8). To further validate the generalization capability of our network, we acquired a dataset with different numbers of shots, TEs, partial Fourier factors, resolutions, ETLs, FOVs, coil numbers, and image orientations from two sites. We also compared the reconstruction performance of our proposed method with that of the conventional MUSE and SSH-EPI qualitatively and quantitatively.Our results show that DL-MUSE is capable of correcting inter-shot phase errors with high and robust performance. Compared to conventional model-based MUSE, our method, by applying deep learning-based phase corrections, showed reduced distortion, noise level, and signal loss in high b-value DWIs. The improvements of image quality become more evident as the shot number increases from 4 to 8, especially in those central regions of the images, where g-factor artifacts are severe. Furthermore, the proposed method could provide the information about the orientation of the white matter with better consistency and achieve finer fibers delineation compared to the SSH-EPI method. Besides, the experiments on volunteers and patients from two different sites demonstrated the generalizability of our proposed method preliminarily.A deep learning-based reconstruction algorithm for MSH-EPI images, which helps improve image quality greatly, was proposed. Results from healthy volunteers and tumor patients demonstrated the feasibility and generalization performances of our method for high-resolution MSH-EPI DWI, which can be used for routine clinical applications as well as neuroimaging research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吴南宛完成签到,获得积分20
1秒前
梦游游游完成签到,获得积分10
2秒前
彩色追命发布了新的文献求助10
3秒前
yu发布了新的文献求助10
3秒前
曾经的臻发布了新的文献求助10
3秒前
5秒前
心旷神怡完成签到,获得积分10
6秒前
6秒前
7秒前
曦之南。发布了新的文献求助10
8秒前
心旷神怡发布了新的文献求助10
10秒前
Azure完成签到,获得积分10
10秒前
yaalan发布了新的文献求助10
10秒前
yu完成签到,获得积分10
11秒前
希望天下0贩的0应助koukaki采纳,获得10
11秒前
搞怪莫茗应助饱满的海秋采纳,获得10
12秒前
我是老大应助laxy采纳,获得10
13秒前
鲜艳的诗翠完成签到,获得积分10
13秒前
14秒前
牛牛超人发布了新的文献求助10
14秒前
kkkkk发布了新的文献求助10
16秒前
18秒前
scabbard24发布了新的文献求助10
18秒前
19秒前
20秒前
sy发布了新的文献求助10
23秒前
dyvdyvaass发布了新的文献求助10
23秒前
沧笙踏歌应助Stroeve采纳,获得10
23秒前
英姑应助LXY采纳,获得10
24秒前
XXH完成签到 ,获得积分10
27秒前
搞怪莫茗应助抚仙采纳,获得30
30秒前
一川完成签到,获得积分10
30秒前
打打应助TRISTE采纳,获得30
32秒前
32秒前
曦之南。完成签到,获得积分10
33秒前
慕青应助雨晴采纳,获得10
33秒前
迷你的晓蓝完成签到,获得积分10
34秒前
吴南宛应助炉石鱼采纳,获得10
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152