Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI

卷积神经网络 人工智能 计算机科学 编码(内存) 单发 混叠 一般化 模式识别(心理学) 灵敏度(控制系统) 弹丸 相(物质) 计算机视觉 数学 物理 电子工程 工程类 数学分析 欠采样 光学 有机化学 化学 量子力学
作者
Hui Zhang,Chengyan Wang,Weibo Chen,Fanwen Wang,Zidong Yang,Shuai Xu,He Wang
出处
期刊:NeuroImage [Elsevier]
卷期号:244: 118632-118632 被引量:7
标识
DOI:10.1016/j.neuroimage.2021.118632
摘要

A phase correction method for high-resolution multi-shot (MSH) diffusion weighted imaging (DWI) is proposed. The efficacy and generalization capability of the method were validated on both healthy volunteers and patients.Conventionally, inter-shot phase variations for MSH echo-planar imaging (EPI) DWI are corrected by model-based algorithms. However, many acquisition imperfections are hard to measure accurately for conventional model-based methods, making the phase estimation and artifacts suppression unreliable. We propose a deep learning multiplexed sensitivity-encoding (DL-MUSE) framework to improve the phase estimations based on convolutional neural network (CNN) reconstruction. Aliasing-free single-shot (SSH) DW images, which have been used routinely in clinical settings, were used for training before the aliasing correction of MSH-DWI images. A dual-channel U-net comprising multiple convolutional layers was used for the phase estimation of MSH-EPI. The network was trained on a dataset containing 30 healthy volunteers and tested on another dataset of 52 healthy subjects and 15 patients with lesions or tumors with different shot numbers (4, 6 and 8). To further validate the generalization capability of our network, we acquired a dataset with different numbers of shots, TEs, partial Fourier factors, resolutions, ETLs, FOVs, coil numbers, and image orientations from two sites. We also compared the reconstruction performance of our proposed method with that of the conventional MUSE and SSH-EPI qualitatively and quantitatively.Our results show that DL-MUSE is capable of correcting inter-shot phase errors with high and robust performance. Compared to conventional model-based MUSE, our method, by applying deep learning-based phase corrections, showed reduced distortion, noise level, and signal loss in high b-value DWIs. The improvements of image quality become more evident as the shot number increases from 4 to 8, especially in those central regions of the images, where g-factor artifacts are severe. Furthermore, the proposed method could provide the information about the orientation of the white matter with better consistency and achieve finer fibers delineation compared to the SSH-EPI method. Besides, the experiments on volunteers and patients from two different sites demonstrated the generalizability of our proposed method preliminarily.A deep learning-based reconstruction algorithm for MSH-EPI images, which helps improve image quality greatly, was proposed. Results from healthy volunteers and tumor patients demonstrated the feasibility and generalization performances of our method for high-resolution MSH-EPI DWI, which can be used for routine clinical applications as well as neuroimaging research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远志完成签到,获得积分10
刚刚
我是老大应助白华苍松采纳,获得10
1秒前
1秒前
小刘爱实验完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
圈圈完成签到,获得积分10
4秒前
自由的鸡翅完成签到,获得积分20
5秒前
Heidi完成签到,获得积分10
5秒前
l z y发布了新的文献求助10
6秒前
6秒前
volvoamg发布了新的文献求助10
8秒前
ddy发布了新的文献求助10
9秒前
滴滴哒哒发布了新的文献求助10
9秒前
笑点低的云朵完成签到,获得积分10
12秒前
小二郎应助一颗红葡萄采纳,获得10
12秒前
圆珠笔完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
16秒前
16秒前
17秒前
拾个饼完成签到,获得积分10
17秒前
科研通AI5应助贺烨霖采纳,获得10
18秒前
18秒前
18秒前
不安青牛应助yuner采纳,获得10
19秒前
白小纯发布了新的文献求助10
19秒前
19秒前
徐嘻嘻完成签到,获得积分10
20秒前
20秒前
l z y完成签到,获得积分10
21秒前
大模型应助安雯采纳,获得30
21秒前
西西瓜瓜发布了新的文献求助10
21秒前
彩虹泡泡发布了新的文献求助10
21秒前
鱼跃完成签到,获得积分10
21秒前
wdlc发布了新的文献求助10
21秒前
FashionBoy应助雪山飞虹采纳,获得10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490736
求助须知:如何正确求助?哪些是违规求助? 3077538
关于积分的说明 9149233
捐赠科研通 2769733
什么是DOI,文献DOI怎么找? 1519934
邀请新用户注册赠送积分活动 704390
科研通“疑难数据库(出版商)”最低求助积分说明 702148