Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI

卷积神经网络 人工智能 计算机科学 编码(内存) 单发 混叠 一般化 模式识别(心理学) 灵敏度(控制系统) 弹丸 相(物质) 计算机视觉 数学 物理 电子工程 工程类 数学分析 欠采样 光学 有机化学 化学 量子力学
作者
Hui Zhang,Chengyan Wang,Weibo Chen,Fanwen Wang,Zidong Yang,Shuai Xu,He Wang
出处
期刊:NeuroImage [Elsevier]
卷期号:244: 118632-118632 被引量:7
标识
DOI:10.1016/j.neuroimage.2021.118632
摘要

A phase correction method for high-resolution multi-shot (MSH) diffusion weighted imaging (DWI) is proposed. The efficacy and generalization capability of the method were validated on both healthy volunteers and patients.Conventionally, inter-shot phase variations for MSH echo-planar imaging (EPI) DWI are corrected by model-based algorithms. However, many acquisition imperfections are hard to measure accurately for conventional model-based methods, making the phase estimation and artifacts suppression unreliable. We propose a deep learning multiplexed sensitivity-encoding (DL-MUSE) framework to improve the phase estimations based on convolutional neural network (CNN) reconstruction. Aliasing-free single-shot (SSH) DW images, which have been used routinely in clinical settings, were used for training before the aliasing correction of MSH-DWI images. A dual-channel U-net comprising multiple convolutional layers was used for the phase estimation of MSH-EPI. The network was trained on a dataset containing 30 healthy volunteers and tested on another dataset of 52 healthy subjects and 15 patients with lesions or tumors with different shot numbers (4, 6 and 8). To further validate the generalization capability of our network, we acquired a dataset with different numbers of shots, TEs, partial Fourier factors, resolutions, ETLs, FOVs, coil numbers, and image orientations from two sites. We also compared the reconstruction performance of our proposed method with that of the conventional MUSE and SSH-EPI qualitatively and quantitatively.Our results show that DL-MUSE is capable of correcting inter-shot phase errors with high and robust performance. Compared to conventional model-based MUSE, our method, by applying deep learning-based phase corrections, showed reduced distortion, noise level, and signal loss in high b-value DWIs. The improvements of image quality become more evident as the shot number increases from 4 to 8, especially in those central regions of the images, where g-factor artifacts are severe. Furthermore, the proposed method could provide the information about the orientation of the white matter with better consistency and achieve finer fibers delineation compared to the SSH-EPI method. Besides, the experiments on volunteers and patients from two different sites demonstrated the generalizability of our proposed method preliminarily.A deep learning-based reconstruction algorithm for MSH-EPI images, which helps improve image quality greatly, was proposed. Results from healthy volunteers and tumor patients demonstrated the feasibility and generalization performances of our method for high-resolution MSH-EPI DWI, which can be used for routine clinical applications as well as neuroimaging research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小朱发布了新的文献求助10
刚刚
乐乐完成签到,获得积分10
2秒前
sxl完成签到 ,获得积分10
2秒前
丘比特应助ys111采纳,获得10
2秒前
3秒前
哈哈完成签到,获得积分10
3秒前
hyphen完成签到,获得积分10
4秒前
moxi摩西完成签到,获得积分10
4秒前
香蕉觅云应助MYY采纳,获得10
5秒前
燕小丙完成签到,获得积分10
5秒前
6秒前
supersuper完成签到,获得积分10
7秒前
瑞仔发布了新的文献求助10
7秒前
8秒前
8秒前
chengmin发布了新的文献求助10
9秒前
YYMY2022完成签到,获得积分10
9秒前
在水一方应助tt采纳,获得10
11秒前
11秒前
狂野的山雁完成签到,获得积分10
12秒前
kkk完成签到,获得积分20
12秒前
俏皮元珊发布了新的文献求助10
13秒前
吨吨发布了新的文献求助40
13秒前
充电宝应助hyphen采纳,获得10
13秒前
科研通AI2S应助草没味采纳,获得10
14秒前
14秒前
好好学习发布了新的文献求助10
15秒前
Jovid完成签到,获得积分10
15秒前
16秒前
旧雨新知完成签到 ,获得积分0
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
仁爱糖豆完成签到,获得积分10
17秒前
ho完成签到 ,获得积分10
17秒前
18秒前
轻松月亮完成签到,获得积分10
19秒前
zhh完成签到,获得积分10
20秒前
20秒前
黄豆发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653053
求助须知:如何正确求助?哪些是违规求助? 4789236
关于积分的说明 15062819
捐赠科研通 4811737
什么是DOI,文献DOI怎么找? 2574034
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488422