亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI

卷积神经网络 人工智能 计算机科学 编码(内存) 单发 混叠 一般化 模式识别(心理学) 灵敏度(控制系统) 弹丸 相(物质) 计算机视觉 数学 物理 电子工程 工程类 数学分析 欠采样 光学 有机化学 化学 量子力学
作者
Hui Zhang,Chengyan Wang,Weibo Chen,Fanwen Wang,Zidong Yang,Shuai Xu,He Wang
出处
期刊:NeuroImage [Elsevier]
卷期号:244: 118632-118632 被引量:7
标识
DOI:10.1016/j.neuroimage.2021.118632
摘要

A phase correction method for high-resolution multi-shot (MSH) diffusion weighted imaging (DWI) is proposed. The efficacy and generalization capability of the method were validated on both healthy volunteers and patients.Conventionally, inter-shot phase variations for MSH echo-planar imaging (EPI) DWI are corrected by model-based algorithms. However, many acquisition imperfections are hard to measure accurately for conventional model-based methods, making the phase estimation and artifacts suppression unreliable. We propose a deep learning multiplexed sensitivity-encoding (DL-MUSE) framework to improve the phase estimations based on convolutional neural network (CNN) reconstruction. Aliasing-free single-shot (SSH) DW images, which have been used routinely in clinical settings, were used for training before the aliasing correction of MSH-DWI images. A dual-channel U-net comprising multiple convolutional layers was used for the phase estimation of MSH-EPI. The network was trained on a dataset containing 30 healthy volunteers and tested on another dataset of 52 healthy subjects and 15 patients with lesions or tumors with different shot numbers (4, 6 and 8). To further validate the generalization capability of our network, we acquired a dataset with different numbers of shots, TEs, partial Fourier factors, resolutions, ETLs, FOVs, coil numbers, and image orientations from two sites. We also compared the reconstruction performance of our proposed method with that of the conventional MUSE and SSH-EPI qualitatively and quantitatively.Our results show that DL-MUSE is capable of correcting inter-shot phase errors with high and robust performance. Compared to conventional model-based MUSE, our method, by applying deep learning-based phase corrections, showed reduced distortion, noise level, and signal loss in high b-value DWIs. The improvements of image quality become more evident as the shot number increases from 4 to 8, especially in those central regions of the images, where g-factor artifacts are severe. Furthermore, the proposed method could provide the information about the orientation of the white matter with better consistency and achieve finer fibers delineation compared to the SSH-EPI method. Besides, the experiments on volunteers and patients from two different sites demonstrated the generalizability of our proposed method preliminarily.A deep learning-based reconstruction algorithm for MSH-EPI images, which helps improve image quality greatly, was proposed. Results from healthy volunteers and tumor patients demonstrated the feasibility and generalization performances of our method for high-resolution MSH-EPI DWI, which can be used for routine clinical applications as well as neuroimaging research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
豆都发布了新的文献求助10
2秒前
务实书包完成签到,获得积分10
2秒前
徐志豪发布了新的文献求助10
4秒前
zorro3574发布了新的文献求助10
5秒前
10秒前
zorro3574完成签到,获得积分10
13秒前
木有完成签到 ,获得积分10
14秒前
16秒前
爆米花应助豆都采纳,获得10
17秒前
19秒前
maoaq完成签到 ,获得积分10
22秒前
24秒前
21145077发布了新的文献求助10
29秒前
31秒前
32秒前
babao发布了新的文献求助30
34秒前
无题完成签到,获得积分10
37秒前
37秒前
研友_VZG7GZ应助青柠采纳,获得10
41秒前
babao完成签到,获得积分20
43秒前
Mmmmmmm发布了新的文献求助30
43秒前
46秒前
52秒前
DD完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
我是老大应助李桂芳采纳,获得10
1分钟前
浮浮世世应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得20
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
压缩完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490