Establishment of a nomogram model for predicting hematoma expansion in intracerebral hemorrhage and its multidimensional evaluation

列线图 格拉斯哥昏迷指数 医学 接收机工作特性 脑出血 逻辑回归 血肿 曲线下面积 曲线下面积 外科 内科学 药代动力学
作者
Y Q Wang,Dai Shi,Ke Lü,Dan Jin,R Wang,Liang Xu,Guohua Fan,Jing Shen,Jianping Gong,Qian Ming-hui
出处
期刊:National Medical Journal of China 卷期号:101 (31): 2471-2477
标识
DOI:10.3760/cma.j.cn112137-20210118-00161
摘要

Objective: To establish a nomogram model for hematoma expansion (HE) prediction after intracerebral hemorrhage (ICH) and evaluate its performance in a multidimensionally way. Methods: A total of 348 ICH patients who were firstly diagnosed and hospitalized in the Second Affiliated Hospital of Soochow University from January 2017 to December 2019 were collected retrospectively. There were 236 males and 112 females, and their age ranged from 18 to 94 (62.0±14.6) years. All patients were divided into HE group (n=121) or non-HE group (n=227) according to the presence or absence of HE. The clinical and imaging features were compared between the two groups. Multivariate logistic regression analysis was performed for determining the independent predicting factors for HE prediction and a Nomogram model was established by using these factors. Receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the prediction effectiveness, accuracy and clinical practicability of the model, respectively. Bootstrap method was used for internal validation. Results: There were significant differences in onset time, swirl sign, history of anticoagulants administrations, systolic blood pressure when admission, Glasgow coma scale (GCS) scores and RBC distribution width between the two groups[(1.77(1.0, 2.5) h vs 2(1, 3) h, 72 cases (59.5%) vs 94 cases (41.4%), 17 cases (14.0%) vs 15 cases (6.6%), (170.69±29.19) mmHg(1 mmHg=0.133 kPa) vs (163.84±26.07) mmHg, 11(8, 14) scores vs 14(10, 15) scores, 44.3% (41.2%, 46.8%) vs 42.4% (40.1%, 45.3%);respectively, all P<0.05]. Multivariate logistic regression analysis demonstrated that onset time (OR=0.809, 95%CI: 0.682-1.961, P=0.015), swirl sign (OR=0.562, 95%CI:0.349-0.905, P=0.018), history of anticoagulants administrations (OR=0.394, 95%CI: 0.180-1.861, P=0.020), and GCS (OR=0.881, 95%CI: 0.815-1.952, P=0.001) were the predicting factors for HE. The area under the curve (AUC) of the Nomogram model was 0.735(95%CI: 0.687-0.805), which demonstrated that the model has an ideal prediction effectiveness. The calibration curve showed that the prediction probability of HE of the model fits well with the actual probability, and with high calibration. DCA showed relatively wide range of optional threshold probability of the model (ranging from 14% to 72%), the clinical practicability of this model was high. The internal validation results showed a C-index of 0.703, indicated a good discrimination power. Conclusion: The established Nomogram model can predict the HE of ICH with good prediction effectiveness, discrimination power and with good clinical practicability, which can be capable of providing an intuitive and visual guidance tool for timely identifying ICH patients who may have HE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
dierda发布了新的文献求助10
刚刚
zxcsdfa应助璀璨的饺子采纳,获得30
1秒前
1s发布了新的文献求助10
2秒前
hzlong完成签到,获得积分10
2秒前
2秒前
MAOJCFK发布了新的文献求助10
2秒前
黄小北完成签到,获得积分10
2秒前
Mistekary发布了新的文献求助10
3秒前
平萱完成签到,获得积分10
3秒前
SYLH应助眯眯眼的语雪采纳,获得30
4秒前
jerrycurry发布了新的文献求助20
4秒前
娃哈哈发布了新的文献求助10
4秒前
yfhhahaha发布了新的文献求助10
4秒前
Hello应助意意采纳,获得10
5秒前
健忘小霜发布了新的文献求助100
5秒前
kermit发布了新的文献求助10
6秒前
WJX完成签到,获得积分20
6秒前
傅秋完成签到,获得积分10
6秒前
dierda完成签到,获得积分10
6秒前
zd发布了新的文献求助10
6秒前
夹心脆菇发布了新的文献求助10
6秒前
无名老大应助开心每一天采纳,获得50
6秒前
7秒前
在水一方应助aaswsdw采纳,获得30
7秒前
白熊IceBear完成签到,获得积分10
8秒前
8秒前
共享精神应助早早发论文采纳,获得10
8秒前
眯眯眼的语雪完成签到,获得积分10
9秒前
SYLH应助hai采纳,获得40
9秒前
勤奋的白桃完成签到,获得积分10
9秒前
bfhlf完成签到,获得积分10
9秒前
劲秉应助小苹果采纳,获得20
9秒前
10秒前
熊熊发布了新的文献求助10
11秒前
11秒前
lailight完成签到,获得积分10
11秒前
12秒前
shadow完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469240
求助须知:如何正确求助?哪些是违规求助? 3062268
关于积分的说明 9078513
捐赠科研通 2752652
什么是DOI,文献DOI怎么找? 1510516
科研通“疑难数据库(出版商)”最低求助积分说明 697909
邀请新用户注册赠送积分活动 697783