Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications

热电效应 热电材料 工程物理 能量收集 半导体 能量转换 热电发电机 化学 热能 纳米技术 材料科学 能量(信号处理) 光电子学 电气工程 物理 热力学 量子力学 工程类
作者
Matteo Massetti,Fei Jiao,Andrew J. Ferguson,Dan Zhao,Kosala Wijeratne,Aloïs Würger,Jeffrey L. Blackburn,Xavier Crispin,Simone Fabiano
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:121 (20): 12465-12547 被引量:206
标识
DOI:10.1021/acs.chemrev.1c00218
摘要

Heat is an abundant but often wasted source of energy. Thus, harvesting just a portion of this tremendous amount of energy holds significant promise for a more sustainable society. While traditional solid-state inorganic semiconductors have dominated the research stage on thermal-to-electrical energy conversion, carbon-based semiconductors have recently attracted a great deal of attention as potential thermoelectric materials for low-temperature energy harvesting, primarily driven by the high abundance of their atomic elements, ease of processing/manufacturing, and intrinsically low thermal conductivity. This quest for new materials has resulted in the discovery of several new kinds of thermoelectric materials and concepts capable of converting a heat flux into an electrical current by means of various types of particles transporting the electric charge: (i) electrons, (ii) ions, and (iii) redox molecules. This has contributed to expanding the applications envisaged for thermoelectric materials far beyond simple conversion of heat into electricity. This is the motivation behind this review. This work is divided in three sections. In the first section, we present the basic principle of the thermoelectric effects when the particles transporting the electric charge are electrons, ions, and redox molecules and describe the conceptual differences between the three thermodiffusion phenomena. In the second section, we review the efforts made on developing devices exploiting these three effects and give a thorough understanding of what limits their performance. In the third section, we review the state-of-the-art thermoelectric materials investigated so far and provide a comprehensive understanding of what limits charge and energy transport in each of these classes of materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助热心观众采纳,获得10
1秒前
1秒前
weiwenzuo发布了新的文献求助10
2秒前
cctv18应助慢慢采纳,获得10
2秒前
MEMSforever应助慢慢采纳,获得10
2秒前
二二完成签到 ,获得积分10
2秒前
song_song完成签到,获得积分10
2秒前
天天好心覃完成签到 ,获得积分10
3秒前
Shijuanerr完成签到,获得积分20
4秒前
小陈完成签到,获得积分10
5秒前
Jaylou完成签到,获得积分10
5秒前
七月兔应助东郭水云采纳,获得10
6秒前
6秒前
wanci应助张秋雨采纳,获得10
7秒前
Orange应助Crystal采纳,获得10
8秒前
CC完成签到,获得积分10
9秒前
杨建航完成签到,获得积分10
9秒前
十一关注了科研通微信公众号
10秒前
科研通AI2S应助慢慢采纳,获得10
10秒前
糖糖完成签到,获得积分10
12秒前
JYX发布了新的文献求助10
12秒前
罗八七完成签到,获得积分10
12秒前
weiwenzuo完成签到,获得积分10
13秒前
14秒前
bkagyin应助积极的幼珊采纳,获得10
14秒前
14秒前
15秒前
可爱的函函应助CC采纳,获得10
15秒前
谦让香菱发布了新的文献求助10
15秒前
妮妮发布了新的文献求助10
15秒前
平平无奇完成签到,获得积分10
16秒前
大个应助leafye采纳,获得20
16秒前
情怀应助昭歆钰采纳,获得10
16秒前
17秒前
杨建航发布了新的文献求助10
17秒前
Tonsil01发布了新的文献求助30
18秒前
19秒前
五弦发布了新的文献求助10
19秒前
20秒前
Yu发布了新的文献求助10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441783
求助须知:如何正确求助?哪些是违规求助? 3038330
关于积分的说明 8971566
捐赠科研通 2726684
什么是DOI,文献DOI怎么找? 1495564
科研通“疑难数据库(出版商)”最低求助积分说明 691221
邀请新用户注册赠送积分活动 688271