Charge storage mechanisms of manganese dioxide-based supercapacitors: A review

超级电容器 材料科学 假电容器 石墨烯 电容 电化学 纳米技术 储能 电极 碳纳米管 化学工程 介孔材料 假电容 冶金 生物化学 化学 物理化学 工程类 催化作用 功率(物理) 物理 量子力学
作者
Xiaoning Tang,Shao-kuan Zhu,Jian Ning,Xing-fu Yang,Min-yi Hu,Jiao‐Jing Shao
出处
期刊:New Carbon Materials [Elsevier BV]
卷期号:36 (4): 702-710 被引量:44
标识
DOI:10.1016/s1872-5805(21)60082-3
摘要

Carbon-based materials, such as carbon nanotubes, graphene and mesoporous carbons, are typical electrochemical double-layer capacitive electrodes of supercapacitors (SCs). Although these carbon electrode materials have excellent electrochemical stability, they usually have a low capacitance. Therefore, pseudocapacitive materials are often combined with them to increase the capacitance. Among these pseudocapacitive materials, manganese dioxide (MnO2) has been widely used because of its high theoretical specific capacitance, low-cost, abundance, and environmentally friendly nature. However, the use of MnO2 often produces rather low actual specific capacitances due to its poor electrical conductivity, serious phase transformation and large volumetric changes during repeated charge and discharge. To explore high-performance MnO2/carbon composite electrode materials, it is necessary to understand the charge storage mechanisms of MnO2. These are analyzed and classified into four types: surface chemisorption of cations, intercalation-deintercalation of cations, a tunnel storage mechanism and a charge compensation mechanism. Although the fourth involves pre-interaction of the cations in MnO2, the essence of all these mechanisms is the valence transition of manganese atoms between +3 and +4, and many mechanisms are usually involved in MnO2-based SCs because of the complicated charge storage process. Critical challenges and possible strategies for achieving high-performance MnO2/carbon-based SCs are discussed and prospective solutions are presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zh发布了新的文献求助10
2秒前
非凡梦完成签到,获得积分10
2秒前
巴哒完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
marker_完成签到,获得积分10
5秒前
6秒前
脑洞疼应助荷兰香猪采纳,获得10
6秒前
wanci应助Jyouang采纳,获得10
9秒前
ankh完成签到,获得积分20
10秒前
子云发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
13秒前
慕青应助jigui采纳,获得10
14秒前
我是老大应助愉快的馒头采纳,获得10
16秒前
shufessm完成签到,获得积分0
16秒前
科研通AI5应助葡萄炖雪梨采纳,获得10
17秒前
17秒前
香蕉觅云应助WWW采纳,获得10
18秒前
20秒前
王二哈完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
师霸发布了新的文献求助10
21秒前
ZYN完成签到,获得积分10
21秒前
研友_LJGGqn发布了新的文献求助10
22秒前
852应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
mammer应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
mammer应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
子云发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664632
求助须知:如何正确求助?哪些是违规求助? 3224535
关于积分的说明 9758095
捐赠科研通 2934477
什么是DOI,文献DOI怎么找? 1606882
邀请新用户注册赠送积分活动 758897
科研通“疑难数据库(出版商)”最低求助积分说明 735053