3D dense convolutional neural network for fast and accurate single MR image super-resolution

反褶积 计算机科学 人工智能 卷积神经网络 水准点(测量) 特征(语言学) 保险丝(电气) 图像分辨率 模式识别(心理学) 计算机视觉 滤波器(信号处理) 图像(数学) 迭代重建 计算复杂性理论 算法 物理 地理 哲学 量子力学 语言学 大地测量学
作者
Lulu Wang,Jinglong Du,Ali Gholipour,Huazheng Zhu,Zhongshi He,Yuanyuan Jia
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:93: 101973-101973 被引量:5
标识
DOI:10.1016/j.compmedimag.2021.101973
摘要

Super-resolution (SR) MR image reconstruction has shown to be a very promising direction to improve the spatial resolution of low-resolution (LR) MR images. In this paper, we presented a novel MR image SR method based on a dense convolutional neural network (DDSR), and its enhanced version called EDDSR. There are three major innovations: first, we re-designed dense modules to extract hierarchical features directly from LR images and propagate the extracted feature maps through dense connections. Therefore, unlike other CNN-based SR MR techniques that upsample LR patches in the initial phase, our methods take the original LR images or patches as input. This effectively reduces computational complexity and speeds up SR reconstruction. Second, a final deconvolution filter in our model automatically learns filters to fuse and upscale all hierarchical feature maps to generate HR MR images. Using this, EDDSR can perform SR reconstructions at different upscale factors using a single model with one stride fixed deconvolution operation. Third, to further improve SR reconstruction accuracy, we exploited a geometric self-ensemble strategy. Experimental results on three benchmark datasets demonstrate that our methods, DDSR and EDDSR, achieved superior performance compared to state-of-the-art MR image SR methods with less computational load and memory usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Wells应助快乐旭尧采纳,获得10
1秒前
小马发布了新的文献求助10
2秒前
orixero应助忐忑的尔容采纳,获得10
3秒前
3秒前
华仔应助靓仔要亮采纳,获得10
3秒前
keeryu完成签到,获得积分10
4秒前
崔尔蓉完成签到,获得积分10
4秒前
4秒前
luo发布了新的文献求助10
4秒前
5秒前
占那个完成签到 ,获得积分10
5秒前
5秒前
louge完成签到,获得积分10
6秒前
科研通AI6应助zzxx采纳,获得10
6秒前
7秒前
旧雨新知完成签到 ,获得积分10
7秒前
8秒前
walu完成签到,获得积分10
8秒前
彩色世倌发布了新的文献求助10
8秒前
Hohaha发布了新的文献求助10
9秒前
10秒前
10秒前
max完成签到,获得积分10
10秒前
快乐旭尧完成签到,获得积分10
13秒前
LXY171发布了新的文献求助20
13秒前
walu发布了新的文献求助20
13秒前
丁浩伦应助小火锅采纳,获得10
13秒前
QQ发布了新的文献求助10
14秒前
Hazel发布了新的文献求助10
16秒前
11111完成签到,获得积分10
16秒前
小蘑菇应助颜林林采纳,获得10
16秒前
小马完成签到,获得积分10
17秒前
顾矜应助科研通管家采纳,获得10
18秒前
不想干活应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
19秒前
不想干活应助科研通管家采纳,获得10
19秒前
无花果应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
Zz应助科研通管家采纳,获得10
19秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888