Soft-self and Hard-cross Graph Attention Network for Knowledge Graph Entity Alignment

计算机科学 知识图 图形 理论计算机科学 人工智能
作者
Zhihuan Yan,Rong Peng,Yaqian Wang,Weidong Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:231: 107415-107415 被引量:8
标识
DOI:10.1016/j.knosys.2021.107415
摘要

Knowledge Graph (KG) entity alignment aims to identify entities across different KGs that refer to the same real world object, and it is the key step towards KG integration and KG complement. Recently, Graph Attention Network (GAT) based models become a popular paradigm in entity alignment community owing to its ability in modeling structural data. But current GAT based models either ignore relation semantics and edge directions when learning entity neighbor representations or make no distinction between incoming neighbors and outgoing neighbors when calculating their attention scores. Furthermore, softmax functions utilized in soft attention mechanisms of current models always assign small but nonzero probabilities to trivial elements, which is unsuitable for learning alignment oriented entity embeddings. Taking these issues into account, this paper proposes a novel GAT based entity alignment model SHEA (Soft-self and Hard-cross Graph Attention Networks for Knowledge Graph Entity Alignment), which takes both relation semantics and edge directions into consideration when modeling single KG, and distinguishes prior aligned neighbors from the general ones to take full advantage of prior aligned information. Specifically, a type of four-channels graph attention layer is conceived to aggregate information from entity neighbors in different cases. The first two channels teach entities to aggregate information from their neighbors with soft-self attention, where both neighboring entities and the linked relations are used to obtain attention values. The other two channels teach entities to aggregate information from their neighbors with hard-cross graph attention, where tf_idf1 is utilized to measure the importance of entity neighbors. Extensive experiments on five publicly available datasets demonstrate our superior performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bminor完成签到,获得积分10
1秒前
vv发布了新的文献求助10
3秒前
zt发布了新的文献求助10
4秒前
甜美洪纲完成签到,获得积分10
5秒前
勤奋傲云完成签到,获得积分10
5秒前
华凯完成签到,获得积分10
6秒前
slycmd完成签到,获得积分10
6秒前
6秒前
科研通AI6应助liang2508采纳,获得10
7秒前
小二郎应助爱学习的栋采纳,获得10
7秒前
WUHUIWEN完成签到,获得积分10
8秒前
10秒前
11秒前
yy发布了新的文献求助10
12秒前
朱大大666发布了新的文献求助10
13秒前
甜美洪纲发布了新的文献求助10
13秒前
Orange应助zt采纳,获得10
14秒前
15秒前
于天一发布了新的文献求助10
15秒前
mafumafu发布了新的文献求助10
17秒前
18秒前
小蘑菇应助我要毕业采纳,获得10
19秒前
19秒前
暴躁的马里奥完成签到,获得积分10
19秒前
Owen应助xiiixixiixi采纳,获得10
20秒前
23秒前
Xiayyy完成签到,获得积分10
23秒前
科研通AI6应助liang2508采纳,获得10
23秒前
苏卿应助yy采纳,获得10
23秒前
科研通AI6应助yy采纳,获得10
23秒前
Glassy发布了新的文献求助10
24秒前
我要毕业完成签到,获得积分10
24秒前
orixero应助此然采纳,获得10
25秒前
幽默的鑫发布了新的文献求助10
25秒前
善学以致用应助胡萝卜采纳,获得10
27秒前
27秒前
FashionBoy应助Xiayyy采纳,获得10
27秒前
28秒前
张__zzz发布了新的文献求助10
29秒前
郝田田发布了新的文献求助20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373872
求助须知:如何正确求助?哪些是违规求助? 4499905
关于积分的说明 14007520
捐赠科研通 4406884
什么是DOI,文献DOI怎么找? 2420755
邀请新用户注册赠送积分活动 1413471
关于科研通互助平台的介绍 1390076