Soft-self and Hard-cross Graph Attention Network for Knowledge Graph Entity Alignment

计算机科学 知识图 图形 理论计算机科学 人工智能
作者
Zhihuan Yan,Rong Peng,Yaqian Wang,Weidong Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:231: 107415-107415 被引量:8
标识
DOI:10.1016/j.knosys.2021.107415
摘要

Knowledge Graph (KG) entity alignment aims to identify entities across different KGs that refer to the same real world object, and it is the key step towards KG integration and KG complement. Recently, Graph Attention Network (GAT) based models become a popular paradigm in entity alignment community owing to its ability in modeling structural data. But current GAT based models either ignore relation semantics and edge directions when learning entity neighbor representations or make no distinction between incoming neighbors and outgoing neighbors when calculating their attention scores. Furthermore, softmax functions utilized in soft attention mechanisms of current models always assign small but nonzero probabilities to trivial elements, which is unsuitable for learning alignment oriented entity embeddings. Taking these issues into account, this paper proposes a novel GAT based entity alignment model SHEA (Soft-self and Hard-cross Graph Attention Networks for Knowledge Graph Entity Alignment), which takes both relation semantics and edge directions into consideration when modeling single KG, and distinguishes prior aligned neighbors from the general ones to take full advantage of prior aligned information. Specifically, a type of four-channels graph attention layer is conceived to aggregate information from entity neighbors in different cases. The first two channels teach entities to aggregate information from their neighbors with soft-self attention, where both neighboring entities and the linked relations are used to obtain attention values. The other two channels teach entities to aggregate information from their neighbors with hard-cross graph attention, where tf_idf1 is utilized to measure the importance of entity neighbors. Extensive experiments on five publicly available datasets demonstrate our superior performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜艳的代亦完成签到,获得积分10
刚刚
莞尔wr1完成签到 ,获得积分10
1秒前
我是老大应助微笑的冰烟采纳,获得10
1秒前
zhu完成签到,获得积分10
1秒前
等风完成签到,获得积分10
2秒前
冰淇淋啦啦啦完成签到,获得积分10
2秒前
2秒前
阳光大有应助GXGXGX采纳,获得10
3秒前
meng完成签到,获得积分10
3秒前
4秒前
微暖完成签到,获得积分0
4秒前
5秒前
zz发布了新的文献求助10
5秒前
趴菜同学完成签到,获得积分20
6秒前
6秒前
大模型应助ewean采纳,获得10
6秒前
中年科研狗完成签到,获得积分10
6秒前
陈亮发布了新的文献求助10
6秒前
嘟嘟发布了新的文献求助10
6秒前
7秒前
BEN完成签到,获得积分10
7秒前
穷且爱睡不坠青云之志完成签到,获得积分10
7秒前
93发布了新的文献求助10
7秒前
小二郎应助等风采纳,获得10
8秒前
嘟嘟嘟嘟嘟嘟完成签到 ,获得积分10
8秒前
8秒前
酷波er应助幸福鱼采纳,获得10
9秒前
椎名真白发布了新的文献求助10
10秒前
camelli完成签到 ,获得积分10
10秒前
韵寒完成签到,获得积分10
10秒前
11秒前
草珊瑚发布了新的文献求助10
11秒前
11秒前
0ne222完成签到,获得积分10
12秒前
yikiheting发布了新的文献求助10
13秒前
13秒前
15秒前
哑巴发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125050
求助须知:如何正确求助?哪些是违规求助? 2775348
关于积分的说明 7726300
捐赠科研通 2430919
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600344