Soft-self and Hard-cross Graph Attention Network for Knowledge Graph Entity Alignment

计算机科学 知识图 图形 理论计算机科学 人工智能
作者
Zhihuan Yan,Rong Peng,Yaqian Wang,Weidong Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:231: 107415-107415 被引量:8
标识
DOI:10.1016/j.knosys.2021.107415
摘要

Knowledge Graph (KG) entity alignment aims to identify entities across different KGs that refer to the same real world object, and it is the key step towards KG integration and KG complement. Recently, Graph Attention Network (GAT) based models become a popular paradigm in entity alignment community owing to its ability in modeling structural data. But current GAT based models either ignore relation semantics and edge directions when learning entity neighbor representations or make no distinction between incoming neighbors and outgoing neighbors when calculating their attention scores. Furthermore, softmax functions utilized in soft attention mechanisms of current models always assign small but nonzero probabilities to trivial elements, which is unsuitable for learning alignment oriented entity embeddings. Taking these issues into account, this paper proposes a novel GAT based entity alignment model SHEA (Soft-self and Hard-cross Graph Attention Networks for Knowledge Graph Entity Alignment), which takes both relation semantics and edge directions into consideration when modeling single KG, and distinguishes prior aligned neighbors from the general ones to take full advantage of prior aligned information. Specifically, a type of four-channels graph attention layer is conceived to aggregate information from entity neighbors in different cases. The first two channels teach entities to aggregate information from their neighbors with soft-self attention, where both neighboring entities and the linked relations are used to obtain attention values. The other two channels teach entities to aggregate information from their neighbors with hard-cross graph attention, where tf_idf1 is utilized to measure the importance of entity neighbors. Extensive experiments on five publicly available datasets demonstrate our superior performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
lzcnextdoor完成签到,获得积分10
1秒前
李爱国应助lelelelele采纳,获得10
1秒前
2秒前
zjw应助W66采纳,获得10
2秒前
嘻嘻完成签到,获得积分10
2秒前
WATQ完成签到,获得积分10
2秒前
Incubus完成签到,获得积分10
3秒前
江洋小偷完成签到,获得积分10
3秒前
复杂大象完成签到,获得积分10
4秒前
Gavin完成签到,获得积分10
4秒前
陌上尘开完成签到 ,获得积分10
4秒前
LAYWL发布了新的文献求助10
4秒前
zmmm发布了新的文献求助10
4秒前
共享精神应助yuanjingnan采纳,获得10
4秒前
李kazuya完成签到 ,获得积分10
5秒前
江洋小偷发布了新的文献求助10
5秒前
6秒前
Raymond完成签到,获得积分0
6秒前
6秒前
7秒前
108实验室完成签到,获得积分20
7秒前
7秒前
清爽伯云完成签到,获得积分10
8秒前
Lucas应助无糖零脂采纳,获得10
8秒前
8秒前
图灵桑完成签到,获得积分10
8秒前
啦啦啦德玛西亚完成签到,获得积分10
9秒前
CodeCraft应助Ava采纳,获得10
9秒前
爱笑的之槐完成签到 ,获得积分10
10秒前
ESTHERDY完成签到 ,获得积分10
10秒前
yyyyyge发布了新的文献求助20
10秒前
不想干活应助美好斓采纳,获得10
10秒前
未晚完成签到,获得积分10
11秒前
邱梓铭完成签到,获得积分10
11秒前
12秒前
DD完成签到,获得积分10
12秒前
zmmm完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743