Soft-self and Hard-cross Graph Attention Network for Knowledge Graph Entity Alignment

计算机科学 知识图 图形 理论计算机科学 人工智能
作者
Zhihuan Yan,Rong Peng,Yaqian Wang,Weidong Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:231: 107415-107415 被引量:8
标识
DOI:10.1016/j.knosys.2021.107415
摘要

Knowledge Graph (KG) entity alignment aims to identify entities across different KGs that refer to the same real world object, and it is the key step towards KG integration and KG complement. Recently, Graph Attention Network (GAT) based models become a popular paradigm in entity alignment community owing to its ability in modeling structural data. But current GAT based models either ignore relation semantics and edge directions when learning entity neighbor representations or make no distinction between incoming neighbors and outgoing neighbors when calculating their attention scores. Furthermore, softmax functions utilized in soft attention mechanisms of current models always assign small but nonzero probabilities to trivial elements, which is unsuitable for learning alignment oriented entity embeddings. Taking these issues into account, this paper proposes a novel GAT based entity alignment model SHEA (Soft-self and Hard-cross Graph Attention Networks for Knowledge Graph Entity Alignment), which takes both relation semantics and edge directions into consideration when modeling single KG, and distinguishes prior aligned neighbors from the general ones to take full advantage of prior aligned information. Specifically, a type of four-channels graph attention layer is conceived to aggregate information from entity neighbors in different cases. The first two channels teach entities to aggregate information from their neighbors with soft-self attention, where both neighboring entities and the linked relations are used to obtain attention values. The other two channels teach entities to aggregate information from their neighbors with hard-cross graph attention, where tf_idf1 is utilized to measure the importance of entity neighbors. Extensive experiments on five publicly available datasets demonstrate our superior performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇明雪完成签到 ,获得积分10
1秒前
慈祥的映菱完成签到,获得积分10
1秒前
香蕉觅云应助一叶扁舟0147采纳,获得10
1秒前
2秒前
李慧敏完成签到,获得积分10
2秒前
梦香馨完成签到 ,获得积分10
3秒前
ao123完成签到,获得积分10
4秒前
王1111完成签到,获得积分20
4秒前
我是老大应助阿龙采纳,获得10
5秒前
5秒前
是兜兜吖发布了新的文献求助10
6秒前
8秒前
666666666666666完成签到 ,获得积分10
10秒前
小马甲应助扭一扭泡一泡采纳,获得10
10秒前
10秒前
sky完成签到,获得积分10
10秒前
Hello应助牛芳草采纳,获得10
10秒前
lzn发布了新的文献求助10
11秒前
研友_8Y2DXL完成签到,获得积分10
11秒前
Demon完成签到,获得积分20
11秒前
wang1030完成签到 ,获得积分10
11秒前
温水发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
恐龙完成签到 ,获得积分10
13秒前
mmss发布了新的文献求助10
13秒前
六哥发布了新的文献求助10
15秒前
彭彭完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
李健应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
传奇3应助科研通管家采纳,获得30
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
JiuYu完成签到,获得积分20
16秒前
Owen应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421804
求助须知:如何正确求助?哪些是违规求助? 4536726
关于积分的说明 14154805
捐赠科研通 4453274
什么是DOI,文献DOI怎么找? 2442809
邀请新用户注册赠送积分活动 1434152
关于科研通互助平台的介绍 1411293