已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Soft-self and Hard-cross Graph Attention Network for Knowledge Graph Entity Alignment

计算机科学 知识图 图形 理论计算机科学 人工智能
作者
Zhihuan Yan,Rong Peng,Yaqian Wang,Weidong Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:231: 107415-107415 被引量:8
标识
DOI:10.1016/j.knosys.2021.107415
摘要

Knowledge Graph (KG) entity alignment aims to identify entities across different KGs that refer to the same real world object, and it is the key step towards KG integration and KG complement. Recently, Graph Attention Network (GAT) based models become a popular paradigm in entity alignment community owing to its ability in modeling structural data. But current GAT based models either ignore relation semantics and edge directions when learning entity neighbor representations or make no distinction between incoming neighbors and outgoing neighbors when calculating their attention scores. Furthermore, softmax functions utilized in soft attention mechanisms of current models always assign small but nonzero probabilities to trivial elements, which is unsuitable for learning alignment oriented entity embeddings. Taking these issues into account, this paper proposes a novel GAT based entity alignment model SHEA (Soft-self and Hard-cross Graph Attention Networks for Knowledge Graph Entity Alignment), which takes both relation semantics and edge directions into consideration when modeling single KG, and distinguishes prior aligned neighbors from the general ones to take full advantage of prior aligned information. Specifically, a type of four-channels graph attention layer is conceived to aggregate information from entity neighbors in different cases. The first two channels teach entities to aggregate information from their neighbors with soft-self attention, where both neighboring entities and the linked relations are used to obtain attention values. The other two channels teach entities to aggregate information from their neighbors with hard-cross graph attention, where tf_idf1 is utilized to measure the importance of entity neighbors. Extensive experiments on five publicly available datasets demonstrate our superior performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助等待靖儿采纳,获得10
1秒前
羞涩的丹云完成签到,获得积分10
4秒前
养猪不带瓢完成签到,获得积分10
5秒前
5秒前
5秒前
鲜云川完成签到,获得积分10
6秒前
CCsouljump完成签到 ,获得积分10
8秒前
大个应助Rafayel采纳,获得10
10秒前
KingWave完成签到,获得积分10
10秒前
ljy完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
神经蛙发布了新的文献求助10
13秒前
千陽完成签到 ,获得积分10
13秒前
13秒前
梦里花落声应助KingWave采纳,获得10
14秒前
rosyw完成签到,获得积分10
15秒前
15秒前
15秒前
yijing关注了科研通微信公众号
15秒前
15秒前
jia8530完成签到 ,获得积分10
16秒前
顾末完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
H恺发布了新的文献求助10
18秒前
19秒前
豆豆完成签到 ,获得积分10
20秒前
草木完成签到 ,获得积分10
20秒前
江树远完成签到 ,获得积分10
20秒前
Jemma发布了新的文献求助10
21秒前
ljy发布了新的文献求助10
22秒前
大模型应助最蠢的讨厌鬼采纳,获得10
22秒前
22秒前
ding应助H恺采纳,获得10
23秒前
青山语发布了新的文献求助10
23秒前
Criminology34应助一车童心采纳,获得30
26秒前
石东明完成签到 ,获得积分10
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443466
求助须知:如何正确求助?哪些是违规求助? 4553318
关于积分的说明 14241555
捐赠科研通 4474980
什么是DOI,文献DOI怎么找? 2452187
邀请新用户注册赠送积分活动 1443137
关于科研通互助平台的介绍 1418774