亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multilabel Feature Selection With Constrained Latent Structure Shared Term

特征选择 计算机科学 人工智能 特征模型 正规化(语言学) 模式识别(心理学) 一致性(知识库) 期限(时间) 水准点(测量) 图形 最小冗余特征选择 机器学习 特征(语言学) 数据挖掘 理论计算机科学 哲学 物理 量子力学 程序设计语言 地理 语言学 大地测量学 软件
作者
Wanfu Gao,Yonghao Li,Liang Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1253-1262 被引量:78
标识
DOI:10.1109/tnnls.2021.3105142
摘要

High-dimensional multilabel data have increasingly emerged in many application areas, suffering from two noteworthy issues: instances with high-dimensional features and large-scale labels. Multilabel feature selection methods are widely studied to address the issues. Previous multilabel feature selection methods focus on exploring label correlations to guide the feature selection process, ignoring the impact of latent feature structure on label correlations. In addition, one encouraging property regarding correlations between features and labels is that similar features intend to share similar labels. To this end, a latent structure shared (LSS) term is designed, which shares and preserves both latent feature structure and latent label structure. Furthermore, we employ the graph regularization technique to guarantee the consistency between original feature space and latent feature structure space. Finally, we derive the shared latent feature and label structure feature selection (SSFS) method based on the constrained LSS term, and then, an effective optimization scheme with provable convergence is proposed to solve the SSFS method. Better experimental results on benchmark datasets are achieved in terms of multiple evaluation criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
撒旦asd发布了新的文献求助10
2秒前
以won完成签到,获得积分10
5秒前
安详的从筠完成签到,获得积分10
6秒前
以won发布了新的文献求助10
14秒前
Orange应助摆烂ing采纳,获得10
14秒前
22秒前
26秒前
摆烂ing完成签到,获得积分10
27秒前
Yantuobio完成签到,获得积分10
53秒前
畅快甜瓜发布了新的文献求助10
55秒前
满意的伊完成签到,获得积分10
55秒前
年鱼精完成签到 ,获得积分10
57秒前
华仔应助读书的时候采纳,获得10
59秒前
1分钟前
懵懂的莛完成签到,获得积分10
1分钟前
yydd发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Lucas应助huahuahahajiu采纳,获得10
1分钟前
英勇滑板发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助自然狗采纳,获得10
1分钟前
yydd完成签到,获得积分20
1分钟前
2分钟前
痞老板死磕蟹黄堡完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
竹修完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
赵芳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
yx发布了新的文献求助10
2分钟前
SciGPT应助信陵君无忌采纳,获得10
3分钟前
3分钟前
yx完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731901
求助须知:如何正确求助?哪些是违规求助? 5333980
关于积分的说明 15321767
捐赠科研通 4877719
什么是DOI,文献DOI怎么找? 2620550
邀请新用户注册赠送积分活动 1569861
关于科研通互助平台的介绍 1526352