催化作用
电子转移
化学工程
氧化还原
氧气
石墨烯
透射电子显微镜
单层
猝灭(荧光)
光化学
化学
材料科学
X射线光电子能谱
纳米技术
无机化学
有机化学
荧光
物理
工程类
量子力学
作者
Weixue Wang,Yang Liu,Yifan Yue,Huihui Wang,Gong Cheng,Chunyang Gao,Chunlin Chen,Yuejie Ai,Zhe Chen,Xiangke Wang
出处
期刊:ACS Catalysis
日期:2021-08-25
卷期号:11 (17): 11256-11265
被引量:153
标识
DOI:10.1021/acscatal.1c03331
摘要
Developing iron-based catalysts with superior activity and stability is a long-term goal for peroxymonosulfate (PMS) activation in advanced oxidation processes. Combining the confined interlayer growth strategy with melt infiltration under dry-chemical conditions, we successfully synthesized ultrathin 2D Fe3O4 nanosheets with a monolayer thickness of about 1 nm. Atomic force microscopy, CS-corrected high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray absorption fine structure, etc. jointly revealed that the 2D Fe3O4 nanosheets possessed special graphene-like morphology and enriched oxygen vacancies. As highly efficient AOP catalysts, a series of refractory organic pollutants, including phenolic compounds, antibiotics, and pharmaceuticals, were degraded and mineralized effectively via the activation of PMS. On the basis of radical quenching experiments, electrochemical analysis, and theory calculations, the radical generation (·OH and SO4·–) and mediated electron transfer were verified to be key mechanisms in the reaction. The oxygen vacancy-rich ultrathin 2D Fe3O4 mediated the electron transfer between pollutions and oxidants, prompted the redox cycle of Fe3O4, and remarkably lowered the energy barrier for interfacial charge transfer. This work could generate 2D metal oxides nanosheets with sufficient oxygen vacancies in a large scale, leading the insight for boosting the activity of iron-based catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI