Working-condition diagnosis of a beam pumping unit based on a deep-learning convolutional neural network

计算机科学 规范化(社会学) 卷积神经网络 人工智能 人工神经网络 模式识别(心理学) 鉴定(生物学) 机器学习 人类学 植物 生物 社会学
作者
Zhewei Ye,Qinjue Yi
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:236 (5): 2559-2573 被引量:4
标识
DOI:10.1177/09544062211029688
摘要

At present, beam pumping units are the most extensively-applied component in rod pumping systems, and the analysis of the indicator diagram of a rod pump is an important means of judging its downhole working condition. However, the synthetic study and judgment of the indicator diagram by manual means has a low efficiency, large error, and poor immediacy, and it is difficult to apply the conclusions in time and accurately to adjust the operating parameters of the pumping units. Moreover, expert systems rely on expert experience and conventional machine learning requires manual pre-selection of geometric features such as moments and vector curves, which will reduce the accuracy of recognition when similar indicator diagrams appear. To solve the above technical defects, in this paper, a deep-learning convolutional neural network (CNN) is proposed using the CNN model based on AlexNet. The automatic recognition of the indicator diagram is thus realized, and, on the basis of previous studies, this model simplifies the structure of the model and takes into account 15 common downhole working conditions of the pumping unit. In this model, the batch normalization (BN) layer is used to replace the local response normalization (LRN) and dropout layers and all kinds of indicator diagrams are put into the same model frame for automatic identification. The experimental application of the measured data shows that the model not only has a short training time, but also has a working-condition diagnosis accuracy of 96.05%, which can solve the deficiencies and defects of artificial identification, expert systems, and conventional machine learning to a certain extent. A deep-learning CNN can provide a new reference for fast working-condition diagnosis of indicator diagram, making indicator-diagram judgment timely and accurate, and thus it is possible to provide a direct basis for parameter adjustment of pumping units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Red发布了新的文献求助10
1秒前
Syun完成签到,获得积分10
2秒前
美丽的冰枫完成签到,获得积分10
3秒前
4秒前
科研通AI5应助归尘采纳,获得10
5秒前
emeqwq完成签到,获得积分10
5秒前
yy不是m完成签到,获得积分10
5秒前
无花果应助找找采纳,获得10
5秒前
124完成签到,获得积分10
6秒前
7秒前
Fe_001完成签到 ,获得积分10
8秒前
清脆以旋发布了新的文献求助10
8秒前
阔达白凡完成签到,获得积分10
8秒前
科研通AI6应助秦屿采纳,获得10
9秒前
刘玉凡发布了新的文献求助10
9秒前
livo完成签到,获得积分10
11秒前
Zjjj0812完成签到 ,获得积分10
12秒前
ghroth完成签到,获得积分10
13秒前
八嘎发布了新的文献求助10
13秒前
14秒前
Owen应助唠叨的冥王星采纳,获得10
21秒前
归尘发布了新的文献求助10
21秒前
ranranhihi完成签到,获得积分10
23秒前
24秒前
木中一完成签到,获得积分10
25秒前
今后应助迷路的依波采纳,获得10
26秒前
沉默的幻枫给沉默的幻枫的求助进行了留言
28秒前
王妞妞发布了新的文献求助10
30秒前
31秒前
小马甲应助刘玉凡采纳,获得10
32秒前
科研通AI5应助dzh采纳,获得30
37秒前
小白完成签到 ,获得积分10
37秒前
谦让成协完成签到,获得积分10
38秒前
43秒前
lql完成签到 ,获得积分10
43秒前
44秒前
鲤鱼寒荷发布了新的文献求助20
46秒前
48秒前
庄彧完成签到 ,获得积分10
49秒前
英俊萧发布了新的文献求助10
49秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430