Working-condition diagnosis of a beam pumping unit based on a deep-learning convolutional neural network

计算机科学 规范化(社会学) 卷积神经网络 人工智能 人工神经网络 模式识别(心理学) 鉴定(生物学) 机器学习 人类学 植物 生物 社会学
作者
Zhewei Ye,Qinjue Yi
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (5): 2559-2573 被引量:4
标识
DOI:10.1177/09544062211029688
摘要

At present, beam pumping units are the most extensively-applied component in rod pumping systems, and the analysis of the indicator diagram of a rod pump is an important means of judging its downhole working condition. However, the synthetic study and judgment of the indicator diagram by manual means has a low efficiency, large error, and poor immediacy, and it is difficult to apply the conclusions in time and accurately to adjust the operating parameters of the pumping units. Moreover, expert systems rely on expert experience and conventional machine learning requires manual pre-selection of geometric features such as moments and vector curves, which will reduce the accuracy of recognition when similar indicator diagrams appear. To solve the above technical defects, in this paper, a deep-learning convolutional neural network (CNN) is proposed using the CNN model based on AlexNet. The automatic recognition of the indicator diagram is thus realized, and, on the basis of previous studies, this model simplifies the structure of the model and takes into account 15 common downhole working conditions of the pumping unit. In this model, the batch normalization (BN) layer is used to replace the local response normalization (LRN) and dropout layers and all kinds of indicator diagrams are put into the same model frame for automatic identification. The experimental application of the measured data shows that the model not only has a short training time, but also has a working-condition diagnosis accuracy of 96.05%, which can solve the deficiencies and defects of artificial identification, expert systems, and conventional machine learning to a certain extent. A deep-learning CNN can provide a new reference for fast working-condition diagnosis of indicator diagram, making indicator-diagram judgment timely and accurate, and thus it is possible to provide a direct basis for parameter adjustment of pumping units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只蹦蹬发布了新的文献求助20
刚刚
Ava应助Georges-09采纳,获得10
刚刚
arcremnant完成签到,获得积分10
刚刚
苏浩然发布了新的文献求助10
1秒前
赵晨雪完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
刘平平完成签到,获得积分10
5秒前
6秒前
今后应助刘春秀采纳,获得10
7秒前
包容的以彤完成签到 ,获得积分10
8秒前
9秒前
kokuyomax完成签到,获得积分10
9秒前
默默的西木完成签到 ,获得积分10
10秒前
琉璃发布了新的文献求助10
10秒前
sinn17发布了新的文献求助30
10秒前
刘平平发布了新的文献求助20
10秒前
球球的铲屎官完成签到,获得积分10
11秒前
苏浩然完成签到,获得积分10
11秒前
12秒前
高高一鸣完成签到,获得积分10
14秒前
16秒前
17秒前
cao完成签到,获得积分10
17秒前
hux发布了新的文献求助10
17秒前
居嵘完成签到 ,获得积分10
19秒前
Nature发布了新的文献求助10
20秒前
冷酷的菲音完成签到 ,获得积分10
22秒前
DirtyFlynn发布了新的文献求助10
22秒前
24秒前
甜美梦竹完成签到,获得积分10
24秒前
丶huasheng完成签到 ,获得积分10
25秒前
yeyiliux发布了新的文献求助20
29秒前
31秒前
徐诗蕾发布了新的文献求助30
31秒前
zhuzhu完成签到 ,获得积分10
32秒前
leslieo3o发布了新的文献求助10
32秒前
33秒前
打工仔完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295760
求助须知:如何正确求助?哪些是违规求助? 4445117
关于积分的说明 13835465
捐赠科研通 4329601
什么是DOI,文献DOI怎么找? 2376742
邀请新用户注册赠送积分活动 1372009
关于科研通互助平台的介绍 1337360