已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Working-condition diagnosis of a beam pumping unit based on a deep-learning convolutional neural network

计算机科学 规范化(社会学) 卷积神经网络 人工智能 人工神经网络 模式识别(心理学) 鉴定(生物学) 机器学习 人类学 植物 生物 社会学
作者
Zhewei Ye,Qinjue Yi
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:236 (5): 2559-2573 被引量:4
标识
DOI:10.1177/09544062211029688
摘要

At present, beam pumping units are the most extensively-applied component in rod pumping systems, and the analysis of the indicator diagram of a rod pump is an important means of judging its downhole working condition. However, the synthetic study and judgment of the indicator diagram by manual means has a low efficiency, large error, and poor immediacy, and it is difficult to apply the conclusions in time and accurately to adjust the operating parameters of the pumping units. Moreover, expert systems rely on expert experience and conventional machine learning requires manual pre-selection of geometric features such as moments and vector curves, which will reduce the accuracy of recognition when similar indicator diagrams appear. To solve the above technical defects, in this paper, a deep-learning convolutional neural network (CNN) is proposed using the CNN model based on AlexNet. The automatic recognition of the indicator diagram is thus realized, and, on the basis of previous studies, this model simplifies the structure of the model and takes into account 15 common downhole working conditions of the pumping unit. In this model, the batch normalization (BN) layer is used to replace the local response normalization (LRN) and dropout layers and all kinds of indicator diagrams are put into the same model frame for automatic identification. The experimental application of the measured data shows that the model not only has a short training time, but also has a working-condition diagnosis accuracy of 96.05%, which can solve the deficiencies and defects of artificial identification, expert systems, and conventional machine learning to a certain extent. A deep-learning CNN can provide a new reference for fast working-condition diagnosis of indicator diagram, making indicator-diagram judgment timely and accurate, and thus it is possible to provide a direct basis for parameter adjustment of pumping units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Ultraman45发布了新的文献求助10
5秒前
JamesPei应助林佳一采纳,获得10
6秒前
科研小白完成签到 ,获得积分10
6秒前
正直蜗牛完成签到,获得积分10
6秒前
Akim应助白日梦采纳,获得10
7秒前
9秒前
小澜孩完成签到,获得积分10
9秒前
小澜孩发布了新的文献求助10
12秒前
16秒前
科目三应助彼岸花开采纳,获得50
17秒前
19秒前
白日梦发布了新的文献求助10
23秒前
cy0824完成签到 ,获得积分10
25秒前
Omni完成签到,获得积分10
28秒前
胡图图啦啦完成签到 ,获得积分10
30秒前
白日梦完成签到,获得积分10
30秒前
斜阳完成签到 ,获得积分10
34秒前
2333完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
39秒前
爆米花应助懂得瞧采纳,获得10
41秒前
mini完成签到 ,获得积分10
42秒前
健壮惋清完成签到 ,获得积分10
43秒前
机灵的听云完成签到,获得积分20
43秒前
xiao完成签到 ,获得积分10
43秒前
鹿靡完成签到,获得积分10
54秒前
挤爆沙丁鱼完成签到,获得积分10
59秒前
lf发布了新的文献求助10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
mmyhn完成签到,获得积分10
1分钟前
懂得瞧发布了新的文献求助10
1分钟前
1分钟前
大个应助研友_Zzy1pn采纳,获得10
1分钟前
橘猫217发布了新的文献求助10
1分钟前
1分钟前
ktw完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520689
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613