Working-condition diagnosis of a beam pumping unit based on a deep-learning convolutional neural network

计算机科学 规范化(社会学) 卷积神经网络 人工智能 人工神经网络 模式识别(心理学) 鉴定(生物学) 机器学习 人类学 植物 生物 社会学
作者
Zhewei Ye,Qinjue Yi
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (5): 2559-2573 被引量:4
标识
DOI:10.1177/09544062211029688
摘要

At present, beam pumping units are the most extensively-applied component in rod pumping systems, and the analysis of the indicator diagram of a rod pump is an important means of judging its downhole working condition. However, the synthetic study and judgment of the indicator diagram by manual means has a low efficiency, large error, and poor immediacy, and it is difficult to apply the conclusions in time and accurately to adjust the operating parameters of the pumping units. Moreover, expert systems rely on expert experience and conventional machine learning requires manual pre-selection of geometric features such as moments and vector curves, which will reduce the accuracy of recognition when similar indicator diagrams appear. To solve the above technical defects, in this paper, a deep-learning convolutional neural network (CNN) is proposed using the CNN model based on AlexNet. The automatic recognition of the indicator diagram is thus realized, and, on the basis of previous studies, this model simplifies the structure of the model and takes into account 15 common downhole working conditions of the pumping unit. In this model, the batch normalization (BN) layer is used to replace the local response normalization (LRN) and dropout layers and all kinds of indicator diagrams are put into the same model frame for automatic identification. The experimental application of the measured data shows that the model not only has a short training time, but also has a working-condition diagnosis accuracy of 96.05%, which can solve the deficiencies and defects of artificial identification, expert systems, and conventional machine learning to a certain extent. A deep-learning CNN can provide a new reference for fast working-condition diagnosis of indicator diagram, making indicator-diagram judgment timely and accurate, and thus it is possible to provide a direct basis for parameter adjustment of pumping units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂觅海完成签到 ,获得积分10
刚刚
Sledge完成签到,获得积分10
1秒前
HarryMoon完成签到,获得积分10
1秒前
1秒前
星辰大海应助silent采纳,获得10
2秒前
赵爽爽完成签到 ,获得积分10
2秒前
图图完成签到 ,获得积分10
3秒前
微生发布了新的文献求助10
3秒前
3秒前
传奇3应助大大怪采纳,获得10
3秒前
4秒前
wanci应助求助123采纳,获得10
4秒前
4秒前
龘龘龘发布了新的文献求助10
4秒前
魁梧的奇迹完成签到 ,获得积分10
4秒前
MandyZZZ发布了新的文献求助10
5秒前
yeape完成签到,获得积分10
5秒前
师宁完成签到,获得积分10
5秒前
黄鱼com完成签到,获得积分10
6秒前
7秒前
cathy-w完成签到,获得积分10
7秒前
马丁陌陌007完成签到 ,获得积分10
7秒前
StevenW给StevenW的求助进行了留言
7秒前
Troy完成签到,获得积分10
7秒前
略略略完成签到,获得积分10
8秒前
MENG发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
Liuya发布了新的文献求助10
9秒前
天使小五哥应助平淡雪糕采纳,获得30
9秒前
a燃发布了新的文献求助10
10秒前
善学以致用应助EasonYan采纳,获得10
11秒前
EIN10发布了新的文献求助10
11秒前
宋宋发布了新的文献求助10
12秒前
xin发布了新的文献求助10
12秒前
SUN完成签到,获得积分10
13秒前
lxy11发布了新的文献求助10
13秒前
小布丁发布了新的文献求助10
13秒前
万能图书馆应助英俊素采纳,获得10
14秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆热工水力特性及安全审评关键问题研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052912
求助须知:如何正确求助?哪些是违规求助? 2710137
关于积分的说明 7419790
捐赠科研通 2354754
什么是DOI,文献DOI怎么找? 1246249
科研通“疑难数据库(出版商)”最低求助积分说明 606002
版权声明 595975