Working-condition diagnosis of a beam pumping unit based on a deep-learning convolutional neural network

计算机科学 规范化(社会学) 卷积神经网络 人工智能 人工神经网络 模式识别(心理学) 鉴定(生物学) 机器学习 人类学 植物 生物 社会学
作者
Zhewei Ye,Qinjue Yi
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:236 (5): 2559-2573 被引量:4
标识
DOI:10.1177/09544062211029688
摘要

At present, beam pumping units are the most extensively-applied component in rod pumping systems, and the analysis of the indicator diagram of a rod pump is an important means of judging its downhole working condition. However, the synthetic study and judgment of the indicator diagram by manual means has a low efficiency, large error, and poor immediacy, and it is difficult to apply the conclusions in time and accurately to adjust the operating parameters of the pumping units. Moreover, expert systems rely on expert experience and conventional machine learning requires manual pre-selection of geometric features such as moments and vector curves, which will reduce the accuracy of recognition when similar indicator diagrams appear. To solve the above technical defects, in this paper, a deep-learning convolutional neural network (CNN) is proposed using the CNN model based on AlexNet. The automatic recognition of the indicator diagram is thus realized, and, on the basis of previous studies, this model simplifies the structure of the model and takes into account 15 common downhole working conditions of the pumping unit. In this model, the batch normalization (BN) layer is used to replace the local response normalization (LRN) and dropout layers and all kinds of indicator diagrams are put into the same model frame for automatic identification. The experimental application of the measured data shows that the model not only has a short training time, but also has a working-condition diagnosis accuracy of 96.05%, which can solve the deficiencies and defects of artificial identification, expert systems, and conventional machine learning to a certain extent. A deep-learning CNN can provide a new reference for fast working-condition diagnosis of indicator diagram, making indicator-diagram judgment timely and accurate, and thus it is possible to provide a direct basis for parameter adjustment of pumping units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方雨季发布了新的文献求助10
刚刚
sunhealth完成签到,获得积分10
刚刚
清秀豪英发布了新的文献求助30
1秒前
李健的粉丝团团长应助Cici采纳,获得10
1秒前
sfsfes发布了新的文献求助10
2秒前
欧阳正义完成签到,获得积分10
2秒前
乖猫要努力应助sujustin333采纳,获得10
3秒前
3秒前
3秒前
思源应助苹果秋灵采纳,获得10
4秒前
X75完成签到,获得积分20
4秒前
joe完成签到,获得积分10
4秒前
4秒前
飞快的寒香完成签到 ,获得积分10
4秒前
5秒前
cyz发布了新的文献求助10
5秒前
5秒前
5秒前
钎城发布了新的文献求助10
5秒前
6秒前
清秀豪英完成签到,获得积分10
6秒前
7秒前
Lucas应助huayi采纳,获得10
8秒前
8秒前
圆圆发布了新的文献求助10
8秒前
8秒前
hsialy发布了新的文献求助10
9秒前
卡卡西应助sigla采纳,获得20
9秒前
xiaoyudianddd发布了新的文献求助10
9秒前
疗效发布了新的文献求助10
10秒前
kikyouzqq完成签到,获得积分10
10秒前
10秒前
调皮德地发布了新的文献求助10
11秒前
11秒前
星星爱学习完成签到,获得积分10
11秒前
skyla1003发布了新的文献求助10
12秒前
步步发布了新的文献求助10
12秒前
科研通AI2S应助ZH采纳,获得10
12秒前
认真千凡发布了新的文献求助10
13秒前
无花果应助fy采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970062
求助须知:如何正确求助?哪些是违规求助? 3514782
关于积分的说明 11175968
捐赠科研通 3250119
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951