An Image Reconstruction Algorithm for a 12-Electrode Capacitively Coupled Electrical Resistance Tomography System Under 2-Electrode Excitation Strategy

迭代重建 代数重建技术 奇异值分解 电极 算法 共轭梯度法 图像质量 激发 重建算法 人工智能 计算机视觉 计算机科学 图像(数学) 材料科学 物理 工程类 电气工程 量子力学
作者
Zhen Xu,Junchao Huang,Yandan Jiang,Baoliang Wang,Zhiyao Huang,Manuchehr Soleimani
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-11 被引量:13
标识
DOI:10.1109/tim.2021.3098388
摘要

An image reconstruction algorithm, which is developed for a 12-electrode capacitively coupled electrical resistance tomography (CCERT) system under 2-electrode excitation strategy, is proposed. Based on L-curve and Reginska's method, truncated singular value decomposition (TSVD) is used to reconstruct the initial image. The algebraic reconstruction technique (ART) algorithm is used to obtain the final reconstructed image. Image reconstruction experiments are conducted by a 12-electrode CCERT system. The proposed algorithm (TSVD + ART) is compared with conventional linear back projection (LBP), Tikhonov, Landweber, ART, simultaneous iterative reconstruction technique (SIRT), total variation (TV), conjugate gradient (CG), and TSVD to evaluate its image reconstruction performance. Image reconstruction results show the proposed algorithm (TSVD + ART) can effectively exploit the advantages of 2-electrode excitation strategy and hence realize higher quality image reconstruction. Under 2-electrode excitation strategy, the proposed algorithm has an obvious advantage over conventional image reconstruction algorithms. Under 1-electrode excitation strategy, the image reconstruction performance is comparable or slightly improved compared with that of conventional image reconstruction algorithms. Image reconstruction results also indicate the TSVD is effective to obtain the initial reconstructed image. The quality of the initial reconstructed image can be significantly improved compared with that of classic LBP, either under 2-electrode excitation strategy or 1-electrode excitation strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助欣喜的绝山采纳,获得10
刚刚
Lucas应助小杰采纳,获得10
1秒前
苏楠发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
linn完成签到,获得积分10
3秒前
123完成签到 ,获得积分10
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
斯文败类应助天气田田采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
海4015应助科研通管家采纳,获得10
5秒前
海4015应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
pupu完成签到,获得积分10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
海4015应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得30
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
Wang Mu发布了新的文献求助40
7秒前
张桓完成签到,获得积分10
7秒前
田様应助ouou采纳,获得10
7秒前
神秘人发布了新的文献求助10
8秒前
无敌鱼发布了新的文献求助10
8秒前
9秒前
xzx发布了新的文献求助10
9秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128551
求助须知:如何正确求助?哪些是违规求助? 2779326
关于积分的说明 7742499
捐赠科研通 2434629
什么是DOI,文献DOI怎么找? 1293580
科研通“疑难数据库(出版商)”最低求助积分说明 623344
版权声明 600514