卷积神经网络
光学(聚焦)
农业
精准农业
计算机科学
工作(物理)
人工智能
农业工程
实时计算
机器学习
工程类
生态学
机械工程
生物
光学
物理
作者
Martina Lippi,Niccolo Bonucci,Renzo Fabrizio Carpio,Mario Contarini,Stefano Speranza,Andrea Gasparri
出处
期刊:Mediterranean Conference on Control and Automation
日期:2021-06-22
被引量:38
标识
DOI:10.1109/med51440.2021.9480344
摘要
In this work, inspired by the needs of the H2020 European project PANTHEON for the precision farming of hazelnut orchards, we propose a data-driven pest detection system. Indeed, the early detection of pests represents an essential step towards the design of effective crop defense strategies in Precision Agriculture (PA) settings. Among the possible pests, we focus on true bugs as they can heavily compromise hazelnut production. To this aim, we collect a custom dataset in a realistic outdoor environment and train a You Only Look Once (YOLO)-based Convolutional Neural Network (CNN), achieving ≈ 94.5% average precision on a holdout dataset. We extensively evaluate the detector performance by also analyzing the influence of data augmentation techniques and of depth information. We finally deploy it on a NVIDIA Jetson Xavier on which it reaches ≈ 50 fps, enabling online processing on-board of any robotic platform.
科研通智能强力驱动
Strongly Powered by AbleSci AI