已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spherical DNNs and Their Applications in 360 Images and Videos

人工智能 计算机科学 计算机视觉 模式识别(心理学)
作者
Yanyu Xu,Ziheng Zhang,Shenghua Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (10): 7235-7252 被引量:17
标识
DOI:10.1109/tpami.2021.3100259
摘要

Spherical images or videos, as typical non-euclidean data, are usually stored in the form of 2D panoramas obtained through an equirectangular projection, which is neither equal area nor conformal. The distortion caused by the projection limits the performance of vanilla Deep Neural Networks (DNNs) designed for traditional euclidean data. In this paper, we design a novel Spherical Deep Neural Network (DNN) to deal with the distortion caused by the equirectangular projection. Specifically, we customize a set of components, including a spherical convolution, a spherical pooling, a spherical ConvLSTM cell and a spherical MSE loss, as the replacements of their counterparts in vanilla DNNs for spherical data. The core idea is to change the identical behavior of the conventional operations in vanilla DNNs across different feature patches so that they will be adjusted to the distortion caused by the variance of sampling rate among different feature patches. We demonstrate the effectiveness of our Spherical DNNs for saliency detection and gaze estimation in $360^\circ$ videos. For saliency detection, we take the temporal coherence of an observer’s viewing process into consideration and propose to use a Spherical U-Net and a Spherical ConvLSTM to predict the saliency maps for each frame sequentially. As for gaze prediction, we propose to leverage a Spherical Encoder Module to extract spatial panoramic features, then we combine them with the gaze trajectory feature extracted by an LSTM for future gaze prediction. To facilitate the study of the $360^\circ$ videos saliency detection, we further construct a large-scale $360^\circ$ video saliency detection dataset that consists of 104 $360^\circ$ videos viewed by 20+ human subjects. Comprehensive experiments validate the effectiveness of our proposed Spherical DNNs for 360 $^\circ$ handwritten digit classification and sport classification, saliency detection and gaze tracking in $360^\circ$ videos. We also visualize the regions contributing to the classification decisions in our proposed Spherical DNNs via the Grad-CAM technique in the classification task, and the results show that our Spherical DNNs constantly leverage reasonable and important regions for decision making, regardless the large distortions. All codes and dataset are available on https://github.com/svip-lab/SphericalDNNs .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm完成签到 ,获得积分10
1秒前
慕青应助彩色凌文采纳,获得10
8秒前
乐观期待完成签到,获得积分10
9秒前
Lucas应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得30
14秒前
英姑应助科研通管家采纳,获得10
15秒前
17秒前
NexusExplorer应助彩色凌文采纳,获得10
22秒前
椰子发布了新的文献求助10
22秒前
Echo发布了新的文献求助10
24秒前
zzzy完成签到 ,获得积分10
28秒前
linliqing发布了新的文献求助20
28秒前
隐形曼青应助詹虔采纳,获得10
32秒前
椰子完成签到,获得积分10
33秒前
无情的踏歌给勤恳雅莉的求助进行了留言
36秒前
Xieyusen发布了新的文献求助20
43秒前
BowieHuang应助SDNUDRUG采纳,获得10
43秒前
50秒前
明亮幻枫发布了新的文献求助10
54秒前
充电宝应助小小鱼采纳,获得10
1分钟前
张辰熙完成签到 ,获得积分10
1分钟前
1分钟前
小贤发布了新的文献求助10
1分钟前
anwen发布了新的文献求助10
1分钟前
Serena完成签到 ,获得积分10
1分钟前
十个勤天发布了新的文献求助10
1分钟前
1分钟前
碧蓝小鸭子完成签到 ,获得积分10
1分钟前
1分钟前
天真的乾发布了新的文献求助10
1分钟前
CNAxiaozhu7应助小贤采纳,获得10
1分钟前
1分钟前
彭于晏应助Daodao采纳,获得10
1分钟前
七月份的表完成签到 ,获得积分10
1分钟前
1分钟前
万能的翔王完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558211
求助须知:如何正确求助?哪些是违规求助? 4643217
关于积分的说明 14670718
捐赠科研通 4584657
什么是DOI,文献DOI怎么找? 2515021
邀请新用户注册赠送积分活动 1489124
关于科研通互助平台的介绍 1459766